首页> 外文学位 >Micromechanical modeling of dynamic fracture in heterogeneous materials.
【24h】

Micromechanical modeling of dynamic fracture in heterogeneous materials.

机译:异质材料中动态断裂的微力学建模。

获取原文
获取原文并翻译 | 示例

摘要

Fracture is the principal mode of failure for a variety of materials under dynamic conditions. The mathematical complexity precludes analytical solution to be obtained. The difficulty is especially pronounced when material inhomogeneities and anisotropy need to be considered.; Recently, alumina/titanium diboride (Al2O3/TiB 2) composites with a wide range of micro and nano phase sizes and phase morphologies have been developed in the School of Materials Science and Engineering at Georgia Tech. In order to understand failure mechanisms in this material system and the influence of phase morphologies and phase size on fracture resistance, a numerical framework is needed to explicitly account for arbitrary microstructures and fracture patterns.; Micromechanical modeling and simulation provide an important approach for analyzing the effects of material inhomogeneity and anisotropy over a range of microscopic length scales. A framework is proposed in this research for explicit modeling and simulation of microscopic damage/fracture/failure processes. The model and approach account for the real arbitrary microstructural morphologies. A cohesive finite element method (CFEM) based on cohesive surface theory is used. A fully dynamic kinetic framework and finite deformation kinematic formulation are used. Mesh independence of solution is studied and verified.; Idealized microstructures containing circular and elliptical particles and real microstructures with arbitrary morphologies are used to investigate the effects of phase morphologies, phase size and phase anisotropy on fracture of this ceramic composite system. Numerical results show that rnicrostructural variations give rise to a range of fracture resistance. Higher fracture resistance is obtained from microstructures with fine evenly distributed microstructural reinforcement entities.; The failure mode is found to be significantly influenced by the interfacial bonding strength between the phases. Two distinct failure modes are observed for strong and weak bonding.
机译:断裂是动态条件下多种材料破坏的主要方式。数学上的复杂性使得无法获得解析解。当需要考虑材料的不均匀性和各向异性时,这一困难尤其明显。近来,氧化铝/二硼化钛(Al 2 O 3 / TiB 2 )复合材料具有广泛的微米和纳米相尺寸和相形态已在佐治亚理工学院材料科学与工程学院开发。为了理解该材料系统中的失效机理以及相形态和相尺寸对抗断裂性的影响,需要一个数值框架来明确说明任意的微观结构和断裂模式。微观力学建模和仿真提供了一种重要的方法,可用于分析一系列微观长度尺度上的材料不均匀性和各向异性的影响。本研究提出了一个框架,用于微观损伤/断裂/破坏过程的显式建模和仿真。该模型和方法考虑了真正的任意微结构形态。使用基于内聚曲面理论的内聚有限元方法(CFEM)。使用了全动态动力学框架和有限变形运动学公式。研究并验证了解的网格无关性。使用理想化的包含圆形和椭圆形颗粒的微观结构以及具有任意形态的真实微观结构来研究相形态,相尺寸和相各向异性对该陶瓷复合体系断裂的影响。数值结果表明,微结构变化会引起一定范围的抗断裂性。从具有精细均匀分布的微结构增强实体的微结构获得更高的抗断裂性。发现失效模式受相之间的界面结合强度的显着影响。对于强粘结和弱粘结,观察到两种不同的失效模式。

著录项

  • 作者

    Zhai, Jun.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Mechanical.; Applied Mechanics.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;应用力学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号