首页> 外文学位 >Mass transfer and GDL electric resistance in PEM fuel cells.
【24h】

Mass transfer and GDL electric resistance in PEM fuel cells.

机译:PEM燃料电池中的传质和GDL电阻。

获取原文
获取原文并翻译 | 示例

摘要

Many modeling studies have been carried out to simulate the current distribution across the channel and shoulder direction in a proton exchange membrane (PEM) fuel cell. However the modeling results do not show agreement on the current density distribution. At the same time, no experimental measurement result of current density distribution across the channel and the shoulder direction is available to testify the modeling studies. Hence in this work, an experiment was conducted to separately measure the current densities under the channel and the shoulder in a PEM fuel cell by using the specially designed membrane electrode assemblies. The experimental results show that the current density under the channel is lower than that under the shoulder except when the fuel cell load is high. Afterwards two more experiments were carried out to find out the reason causing the higher current density under the shoulder. The effects of the electric resistance of gas diffusion layer (GDL) in the lateral and through-plane directions on the current density distribution were studied respectively. The experimental results show that it is the through-plane electric resistance that leads to the higher current density under the shoulder.;Moreover, a three-dimensional fuel cell model is developed using FORTRAN. A new method of combining the thin-film model and homogeneous model is utilized to model the catalyst layer. The model is validated by the experimental data. The distribution of current density, oxygen concentration, membrane phase potential, solid phase potential and overpotential in a PEM fuel cell have been studied by the model. The modeling results show that the new modeling method provides better simulations to the actual transport processes and chemical reaction in the catalyst layer of a PEM fuel cell.
机译:已经进行了许多建模研究,以模拟质子交换膜(PEM)燃料电池中通道和肩部方向上的电流分布。但是,建模结果在电流密度分布上并不一致。同时,没有通道和肩部方向上电流密度分布的实验测量结果可用于证明建模研究。因此,在这项工作中,进行了一项实验,通过使用专门设计的膜电极组件,分别测量PEM燃料电池中通道和肩部下方的电流密度。实验结果表明,除了燃料电池负载较高时,通道下方的电流密度均低于肩部下方的电流密度。之后,又进行了两次实验,以找出引起肩下电流密度较高的原因。分别研究了气体扩散层(GDL)的电阻在横向和贯通平面方向上对电流密度分布的影响。实验结果表明,通孔电阻会导致肩部下方的电流密度更高。此外,使用FORTRAN建立了三维燃料电池模型。利用薄膜模型和均相模型相结合的新方法对催化剂层进行建模。实验数据验证了该模型。通过该模型研究了PEM燃料电池中电流密度,氧浓度,膜相电势,固相电势和超电势的分布。建模结果表明,新的建模方法可以更好地模拟PEM燃料电池催化剂层中的实际传输过程和化学反应。

著录项

  • 作者

    Wang, Lin.;

  • 作者单位

    University of Miami.;

  • 授予单位 University of Miami.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号