首页> 外文学位 >A simple effective model for calculating electron transfer rates in proteins, and an analysis of the evolutionary engineering principles used to create biological electron transfer systems.
【24h】

A simple effective model for calculating electron transfer rates in proteins, and an analysis of the evolutionary engineering principles used to create biological electron transfer systems.

机译:一个简单有效的模型,用于计算蛋白质中的电子转移速率,并分析了用于创建生物电子转移系统的进化工程原理。

获取原文
获取原文并翻译 | 示例

摘要

Electron transfer in a protein is a complicated process to model as it takes place in a strongly disordered, insulating environment, yet each protein has a very specific structure determined by evolution. We have developed a simple model to calculate protein electron transfer rates that examines the structure to a first level of approximation, with results matching the data to within the data's error bars, .8 log units. We then used that model to analyze the crystal structures of 31 natural electron transfer proteins to statistically determine what factors (angular orientation, thermodynamic properties, protein density, distance, secondary structure) have been utilized by natural selection to obtain sufficiently fast electron transfer. The edge-to-edge distances between redox centers are 14 A or less, due to the strong exponential dependency of rate on distance. (A 1.6 A shift gives an order of magnitude change in rate.) Longer distances are crossed by chains of redox centers with individual distances of 14 A or less. None of the other factors had statistically significant patterns indicating they were optimized by evolution to modulate electron transfer rates.;This makes setting the distance not just necessary but sufficient for the design of electron transfer systems, removing the need for specific pathways or detailed optimized structures. For redox chains, short distances can compensate for endergonic steps, removing the need for superexchange. At very short distances, the high-energy radical states of substrates can be reached without any special mechanisms, allowing the creation of catalytic sites just through the use of proximity. All this makes for a robust electron transfer engineering that is less likely to be upset by random evolutionary mutations. These concepts are also applicable for those trying to understand how natural proteins work, or trying to build artificial electron transfer proteins.
机译:蛋白质中的电子转移是一个复杂的建模过程,因为它发生在强烈无序的绝缘环境中,但是每种蛋白质都具有通过进化确定的非常特殊的结构。我们已经开发了一个简单的模型来计算蛋白质电子传递速率,该模型将结构检查到第一近似水平,其结果将数据与数据的误差线(0.8对数单位)匹配。然后,我们使用该模型分析31种天然电子转移蛋白的晶体结构,以统计学方式确定自然选择已利用了哪些因素(角取向,热力学性质,蛋白质密度,距离,二级结构)来获得足够快的电子转移。由于速率对距离的强烈指数依赖性,氧化还原中心之间的边到边距离为14 A或更小。 (1.6个位移会导致速率发生一个数量级的变化。)更长的距离会被氧化还原中心链交叉,单个距离等于或小于14A。没有其他因素具有统计学上的显着模式,表明它们已通过进化进行了优化以调节电子传输速率;这使得设置距离不仅对于电子传输系统的设计是必要的,而且是足够的,从而无需特定的路径或详细的优化结构。对于氧化还原链,短距离可以补偿负离子阶跃,从而无需进行超级交换。在非常短的距离下,无需任何特殊机制即可达到底物的高能自由基状态,从而仅通过使用邻近即可创建催化位点。所有这些都使电子转移工程更加可靠,而随机进化突变不会使电子转移工程更加混乱。这些概念也适用于试图了解天然蛋白质如何工作或试图构建人工电子转移蛋白质的人们。

著录项

  • 作者

    Page, Christopher Charles.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 267 p.
  • 总页数 267
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:47:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号