首页> 外文学位 >Nanoscale Energy Transport Investigated with Ultrafast Electron Microscopy
【24h】

Nanoscale Energy Transport Investigated with Ultrafast Electron Microscopy

机译:用超快电子显微镜研究纳米级能量传输

获取原文
获取原文并翻译 | 示例

摘要

Direct visualization of dynamic and non-equilibrium processes occurring on the atomic-scale remains a tremendous challenge owing to the condensed time-scales associated with the reduction in length-scale. Coherent phonon transport, for example, occurs at the speed of sound over distances spanning a few nanometers to a few microns. As such, a single wavefront may emanate, propagate, and scatter over the course of just a few picoseconds. Uniquely, ultrafast electron microscopy (UEM) has the ability to probe phonon transport processes on the relevant condensed time- and length-scales simultaneously, avoiding ensemble averaging over time and space characteristic of many traditional probes. Here, we have focused on the development of UEM as a tool for direct investigation of energy transport processes on the nanoscale. We have studied a variety of phenomena in two-dimensional atomic crystals and discussed progress in methodologies in operation of a thermionic UEM.;In UEM, we call upon a variety of analytical modalities which utilize elastic scattering as a sensitive indicator of structural modulation within a crystalline lattice. Contrast in real-space arising from small angular perturbations in lattice orientation (and as result, local modulation of the Bragg condition) associated with phonon-mediated elastic deformation allows imaging the propagation of individual phonon wavefronts. We have discovered that phonon nucleation and launch occurs at discrete spatial locations along individual interfaces, and that the appearance of coherent, propagating wavefronts are extremely sensitive to the shapes of local strain fields and vacuum-crystal interfaces. Additional information from local elastic scattering in reciprocal-space allows examination of the specific modes and mechanisms of the observed phonon transport. In thin-films of WSe2, we conclude that the observed modes arise from interfacial stress resulting from the initial excitation and confinement of compressional waves along the WSe2 c-axis stacking direction within the thickness of the specimen. We also observe large-amplitude out-of-plane modes in single-crystal and polycrystalline monolayer graphene membranes through examination of laser-excited variation in the Debye-Waller factor; we expect the intrinsic ripples of the suspended membranes mediate flexural modes in a manner similar to the morphologically dependent wavefronts in WSe2 .;We have found that the ultrafast imaging and diffraction experiments are subject to a variety of practical challenges associated with stroboscopic operation. For one, heat dissipation from the specimen must be considered such that pseudo-steady-state operating temperatures resulting from the laser-pulse-trains are within ranges suitable for a particular experiment. Additionally, dynamics occurring on time-scales comparable to instrument response require precise deconvolution for proper interpretation of instrinsic material response. As such, we systematically optimize photoelectron generation and collection and map the space-charge and temporal instrument-response parameter space as a function of photoelectron-packet population. We obtain photoelectron packets populated by up to ~105 electrons, and instrument-response times range from 1 to 10 ps (FWHM) for laser-limited single-electron packets to those with maximum packet population. This large range of achievable bunch-charge increases experimental flexibility and allows UEM experiments to be conducted at relatively low repetition rates facilitating investigation of a greater range of ultrafast phenomena.;We expect the methodology and insight presented in this work will aid in future quantitative studies of energy transport in crystalline materials with nanostructured interfaces and atomic defects. Ultimately, we envision the direct insight available in UEM will facilitate design of materials and structures for precise control of energy transport and improvement of the numerous applications in which understanding heat transport is critical.
机译:由于缩合的时间尺度与长度尺度的减小相关,因此在原子尺度上动态地观察动态和非平衡过程仍然是一个巨大的挑战。例如,相干声子传输以声音的速度在几纳米到几微米的距离上发生。这样,单个波前可能会在几皮秒的过程中散发出,传播和散射。独特的是,超快速电子显微镜(UEM)能够同时在相关的浓缩时间尺度和长度尺度上探测声子传输过程,从而避免了许多传统探测器在时间和空间上的总体平均。在这里,我们专注于UEM的开发,将其作为直接研究纳米级能量传输过程的工具。我们研究了二维原子晶体中的各种现象,并讨论了热电子UEM的操作方法学方面的进展。在UEM中,我们呼吁采用弹性散射作为结构内调制的敏感指标的各种分析形式。晶格。与声子介导的弹性变形相关的晶格方向上的小角度扰动(以及由此引起的布拉格条件的局部调制)引起的实际空间中的对比度允许对各个声子波前的传播进行成像。我们发现声子成核和发射发生在沿各个界面的离散空间位置,并且相干的传播波前的出现对局部应变场和真空晶体界面的形状极为敏感。来自互易空间中局部弹性散射的其他信息可以检查所观察到的声子传输的特定模式和机制。在WSe2薄膜中,我们得出的结论是,观察到的模态是由界面应力引起的,该界面应力是由于沿试样的厚度在WSe2 c轴堆叠方向上的初始激发和压缩波的限制而产生的。通过检查激光激发的德拜-沃勒因子的变化,我们还观察到了单晶和多晶单层石墨烯膜中的大振幅平面外模式。我们期望悬浮膜的固有波纹以类似于WSe2中依赖于形态学的波阵面的方式来调节弯曲模式。我们已经发现,超快成像和衍射实验受到频闪操作的各种实际挑战。首先,必须考虑试样的散热,以使由激光脉冲序列产生的伪稳态工作温度在适合特定实验的范围内。另外,发生在与仪器响应相当的时间尺度上的动力学需要精确的反褶积,以正确解释本征物质响应。因此,我们系统地优化了光电子的产生和收集,并将空间电荷和时间仪器响应参数空间映射为光电子数据包总数的函数。我们获得了最多可容纳约105个电子的光电子数据包,对于激光受限的单电子数据包到最大数据包人口的仪器响应时间范围为1到10 ps(FWHM)。大量可实现的束电荷增加了实验的灵活性,并允许UEM实验以相对较低的重复率进行,从而有助于研究更大范围的超快现象。;我们希望这项工作中介绍的方法和见识将有助于未来的定量研究具有纳米结构界面和原子缺陷的晶体材料中的能量传输过程最终,我们预见到UEM中的直接见解将有助于材料和结构的设计,以精确控制能量传输,并改善对了解热传输至关重要的众多应用。

著录项

  • 作者

    Plemmons, Dayne Andrew.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号