首页> 外文学位 >Extensive chaos and complexity of two-dimensional turbulence.
【24h】

Extensive chaos and complexity of two-dimensional turbulence.

机译:二维湍流的广泛混乱和复杂性。

获取原文
获取原文并翻译 | 示例

摘要

This thesis concerns how the dynamics of 2D fluid systems may become complex due to various physical parameters such as the forcing intensity and scale, the dissipation mechanism, and the system size. These complexity-determining factors are found to act collectively to give rise to the dynamical complexities. The fluid models in this study are shallow layers of viscous incompressible fluids on rectangular domains governed by the familiar 2D Navier-Stokes equations with and without a hypoviscosity term (linear Ekman drag is added to model large-scale dissipation).; Three main analyses are carried out. One is the asymptotic analysis of the 2D Navier-Stokes equations driven by a monoscale forcing. The results obtained include a dynamical constraint and possible scaling laws for the energy spectrum. These are then generalized to systems with a general viscosity and extended to systems with Ekman drag. The second analysis concerns the estimation of the attractor dimension of the systems under consideration. We employ the technique developed by Constantin-Foias-Temam for the calculation of attractor dimension of dissipative dynamical systems. The present investigation focuses on the optimal estimation of the dimensionality and its extensivity. It is found, in general, that the estimates do not depend on the physical parameters in a fixed functional form, but rather take different expressions in different regions of parameter space. In particular, the attractor dimension of the Navier-Stokes equations (with or without Ekman drag) is shown to grow linearly with the domain area (for a sufficiently large domain) if the kinematic viscosity and the forcing density and its scale are held fixed. We also show that slightly super-extensive behaviour prevails for a wide range of the parameters. The third investigation concerns the stability problem (both linear and nonlinear) of simple laminar stationary flows. The analysis examines how the flows may become unstable and explores the properties of some unstable eigenmodes. The familiar Fourier expansion method is used for this study. It is found that (in)stabilities depend on the forcing scale in a peculiar and nontrivial way.
机译:本文涉及二维流体系统的动力学如何由于各种物理参数(如强迫强度和尺度,耗散机制和系统大小)而变得复杂。发现这些决定复杂性的因素共同作用以引起动态复杂性。这项研究中的流体模型是矩形域上的粘性不可压缩流体的浅层,由熟悉的2D Navier-Stokes方程控制,带有和不带有低粘度项(添加线性Ekman阻力来模拟大规模耗散)。进行了三个主要分析。一种是由单尺度强迫驱动的二维Navier-Stokes方程的渐近分析。获得的结果包括动态约束和可能的能谱定律。然后将它们推广到具有一般粘度的系统,并扩展到具有埃克曼阻力的系统。第二种分析涉及对所考虑系统的吸引子尺寸的估计。我们采用了由Constantin-Foias-Temam开发的技术来计算耗散动力系统的吸引子尺寸。目前的研究集中在维数及其可扩展性的最佳估计上。通常发现,估计不依赖于固定功能形式的物理参数,而是在参数空间的不同区域中采用不同的表达式。特别是,如果运动粘度和强迫密度及其比例保持固定,则Navier-Stokes方程(具有或不具有Ekman阻力)的吸引子尺寸将随畴区域(对于足够大的畴)线性增长。我们还显示,在广泛的参数范围内,略有超扩展行为。第三次研究涉及简单层流平稳流的稳定性问题(线性和非线性)。该分析检查了流量如何变得不稳定,并探讨了某些不稳定本征模的性质。这项研究使用了熟悉的傅里叶展开法。发现(不稳定)稳定性以独特且不平凡的方式取决于强迫的规模。

著录项

  • 作者

    Tran, Chuong Van.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Physics Atmospheric Science.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 98 p.
  • 总页数 98
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 大气科学(气象学);
  • 关键词

  • 入库时间 2022-08-17 11:47:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号