首页> 外文学位 >Cometabolic and growth-linked biodegradation of vinyl chloride under aerobic conditions.
【24h】

Cometabolic and growth-linked biodegradation of vinyl chloride under aerobic conditions.

机译:有氧条件下氯乙烯的可代谢和生长相关的生物降解。

获取原文
获取原文并翻译 | 示例

摘要

This thesis reports on isolation of three aerobic microorganisms that are capable of growth-linked or cometabolic biodegradation of vinyl chloride (VC).; Pseudomonas aeruginosa strain MF1 was isolated on VC as a sole carbon and energy source, with an observed yield of 0.20 mg total suspended solids (TSS)/mg VC and a maximum specific growth rate (μ max) of 0.0048 d−1. MF1 dechlorinated VC and mineralized or incorporated it into cell mass. This represents the first report of a Pseudomonas capable of growth on VC. In contrast to previous isolates, MF1 was able to resume VC use after extended periods (>24 days) without any substrate. However, MF1 did not recover the ability to degrade VC when deprived of oxygen for 2.5 days. The likely metabolic pathway for VC metabolism is a monooxygenase initiated transformation into VC-epoxide that enters the TCA cycle via acetyl-CoA.; Pseudomonas sp. strain EA1 was isolated on ethane as a sole carbon and energy source and cometabolizes VC. It is the first Pseudomonas reported with the ability to grow on ethane. The transformation capacity of resting cells is 1.03 μmol VC/mg TSS. Almost half of the VC consumed by EA1 is released as a soluble, non-chlorinated product. The presence, but not consumption, of ethane led to a faster initial VC degradation rate and a decrease in the VC transformation capacity. A conceptual and mathematical model of VC cometabolism kinetics was developed in order to describe this novel type of primary substrate and cometabolite interaction.; P. aeruginosa strain DL1 was isolated on ethene as a primary substrate and rapidly cometabolizes VC. With extended incubation, DL1 transitions to use of VC as a primary substrate, with an observed yield of 0.21 mg TSS/mg VC and μmax of 0.046 d−1. Cometabolism of VC was stimulated by low ethene concentrations, but consumption of larger amounts of ethene decreased the total amount of VC degraded. A conceptual and mathematical model was developed that describes the cometabolism kinetics.; These findings demonstrate the existence of isolates that can aerobically grow on VC in a robust manner, or cometabolize VC rapidly when grown on ethene or ethane.
机译:这篇论文报道了三种有氧微生物的分离,这些微生物能够与氯乙烯(VC)发生生长联系或代谢生物降解。在VC上分离出铜绿假单胞菌菌株MF1作为唯一的碳和能源,观察到的总悬浮固体(TSS)/ mg VC产量为0.20 mg,最大比生长速率(μ max )为0.0048 d -1 。 MF1使VC脱氯并矿化或合并到细胞团中。这是能够在VC上生长的假单胞菌的首次报道。与以前的分离株相比,MF1能够在长时间(> 24天)内没有任何底物的情况下恢复使用VC。但是,当缺氧2.5天时,MF1无法恢复降解VC的能力。 VC代谢的可能代谢途径是单加氧酶引发的向VC-环氧的转化,该转化通过乙酰辅酶A进入TCA循环。 假单胞菌 sp。 EA1菌株在乙烷上被分离为唯一的碳和能源,并与VC发生代谢。这是第一个报道的能够在乙烷上生长的假单胞菌。静息细胞的转化能力为1.03μmolVC / mg TSS。 EA1消耗的VC几乎有一半以可溶性的非氯化产物形式释放。乙烷的存在而非消耗导致乙烷的初始VC降解速度加快,并且VC转化能力降低。为了描述这种新型的主要底物和代谢物相互作用,建立了VC代谢动力学的概念和数学模型。 <斜体> P。铜绿假单胞菌DL1菌株在乙烯上分离为主要底物,并迅速代谢VC。随着孵育时间的延长,DL1转变为使用VC作为主要底物,观察到的产量为0.21 mg TSS / mg VC,μ 0.046 d -1 。乙烯浓度低会刺激VC的新陈代谢,但消耗大量乙烯会降低VC降解的总量。建立了描述新陈代谢动力学的概念和数学模型。这些发现证明了分离株的存在,这些分离株可以以有力的方式在VC上有氧生长,或者在乙烯或乙烷上生长时可以快速代谢VC。

著录项

  • 作者

    Verce, Matthew Francis.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Environmental.; Environmental Sciences.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境污染及其防治;环境科学基础理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号