首页> 外文学位 >Hydrology, microbiology and carbon cycling at a high Arctic polythermal glacier, (John Evans Glacier, Ellesmere Island, Canada).
【24h】

Hydrology, microbiology and carbon cycling at a high Arctic polythermal glacier, (John Evans Glacier, Ellesmere Island, Canada).

机译:加拿大北极高寒冰川上的水文,微生物学和碳循环(加拿大埃勒斯米尔岛的约翰·埃文斯冰川)。

获取原文
获取原文并翻译 | 示例

摘要

Analysis of the hydrology, hydrochemistry and microbiology at polythermal John Evans Glacier and geochemical and isotopic data from Haut Glacier d'Arolla demonstrates that certain subglacial chemical weathering processes are microbially mediated.; Subglacial drainage is likely an annual occurrence beneath John Evans Glacier and solute rich subglacial waters indicate over winter storage at the glacier bed. Subglacial microbial populations are also present, and are viable under simulated near in situ conditions at 0.3°C. This suggests that temperate subglacial environments at a polythermal glacier, which are isolated by cold ice above and around them, provide a viable habitat for life where basal water and organic carbon are present throughout the year. Thus, a subglacial microbial ecosystem based upon legacy carbon, (from old soils or surface inputs) rather than primary production may exist, where redox processes are a key component, and seasonal anoxia may occur. The existence of anoxic environments is supported by the presence of strictly anaerobic bacteria (sulphate reducing bacteria and methanogens) in the basal sediments—which are viable in culture at 4°C—and also argues that these bacteria are not washed in with oxygenated surface meltwaters, but are present in the subglacial environment.; During the summer meltseason there is a large input of surficial waters to the subglacial system and water residence times are drastically reduced. Hence, kinetic weathering processes dominate, resulting in light δ 13C-DIC (dissolved inorganic carbon) in glacial runoff, as verified by experimental work on CaCO3 and John Evans Glacier sediments. The experiments demonstrate kinetic bedrock fractionation (KBF) during carbonate hydrolysis and that kinetic fractionation of CO2 (KFC) is proportional to the rate of CO2 draw down during the carbonation of carbonates. This results in significantly depleted δ13C-DIC values (≤−16 ‰) relative to the bedrock carbonate. Incorporating KBF and KFC processes into geochemical weathering models makes it possible to distinguish between kinetic effects and microbial CO2 as causes of light δ13C-DIC in glacial runoff. However, where kinetically produced DIC dominates, this can potentially mask small microbial respiration signatures. Only in the distributed system waters at Haut Glacier d'Arolla is light δ13C-DIC clearly due to microbial respiration.
机译:对多热约翰·埃文斯冰川的水文学,水化学和微生物学的分析以及来自上冰川阿罗拉的地球化学和同位素数据表明,某些冰川下的化学风化过程是由微生物引起的。约翰·埃文斯冰川下的冰川下排水很可能每年发生一次,富含溶质的冰川下水表明冬季在冰川床中储存。冰川下微生物种群也存在,并且在0.3°C的模拟就地条件下可行。这表明,在多热冰川的温带冰川下环境,被它们上方和周围的冷冰所隔离,为全年都有基础水和有机碳存在的生活提供了可行的栖息地。因此,可能存在一个基于遗留碳(来自旧土壤或地表输入)而不是初级生产的冰川下微生物生态系统,其中氧化还原过程是关键组成部分,并且可能发生季节性缺氧。缺氧环境的存在得到了基础沉积物中严格厌氧细菌(硫酸盐还原细菌和产甲烷菌)的存在的支持(它们可以在4°C的温度下培养),并且认为这些细菌没有被含氧表面融化水冲洗,但存在于冰下环境中。在夏季融雪季节,冰川下系统输入了大量的表层水,水的停留时间大大减少。因此,动力学风化过程占主导地位,在冰川径流中产生轻δ 13 C-DIC(溶解的无机碳),这在CaCO 3 和John Evans Glacier的实验工作中得到了证实。沉积物。实验证明了碳酸盐水解过程中的动力学基岩分馏(KBF),而CO 2 (KFC)的动力学分馏与CO 2 碳酸化过程中汲取的速率成正比。碳酸盐。相对于基岩碳酸盐而言,这导致δ 13 C-DIC值显着耗尽(≤-16‰)。将KBF和KFC过程纳入地球化学风化模型可以区分动力学效应和微生物CO 2 作为冰川径流中光δ 13 C-DIC的原因。但是,在动力学产生的DIC占主导地位的地方,这可能会掩盖小微生物的呼吸信号。由于微生物的呼吸作用,只有在Haut Glacier d'Arolla的分布式系统水域中的δ 13 C-DIC才很明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号