首页> 外文学位 >Numerical study of drop formation by a vortex ring.
【24h】

Numerical study of drop formation by a vortex ring.

机译:涡环形成液滴的数值研究。

获取原文
获取原文并翻译 | 示例

摘要

The numerical simulations using a Front-Tracking/Finite difference method were performed to investigate the interface breakup and drop formation processes caused by the interaction of a vortex ring with an immiscible interface in zero-gravity. The investigation focuses on the critical Weber number for the interface breakup and the effects of viscosity and density ratios on the interaction.; First, the propagation characteristics and flow structure of the vortex ring in the post-formation region were investigated to validate the numerical scheme and resolution of the numerical simulations.; Second, Ohnesorge number effects in the interface breakup and drop formation processes were determined. The critical Weber number for the interface breakup increases as the Ohnesorge number increases, and this variation in the critical Weber number is attributed to the stabilizing effects of the viscosity. It was also found the critical Weber number for formation of one droplet is given by the correlation, Wec1 = (9.8868 × 103)Ohb + 26.1. For cases at Wec1, and at Wec2 with large Ohnesorge number the interface breakup mechanism is buckling of the interface as the liquid column collapses on the lower layer. At higher Weber numbers instability of the liquid column develops that results in the formation of two or more droplets. Numerical results reveal that the correlation coefficient, the ratio of nozzle radius to the initial amplitude of the disturbance, ln&parl0;aNzo &parr0; , a function of Ohnesorge number which decreases as Ohnesorge number increases. The Weber, Ohnesorge numbers, and ln&parl0;aNzo &parr0; play crucial roles in determining the breakup length when the magnitude of Ohnesirge number is much less than one.; Third, the viscosity and density ratios effects in the interface breakup and drop formation processes were investigated.; The initial evolution of an interface and overall vorticity distribution are quite similar even for large variations in the viscosity ratio. The noticeable effects of the viscosity ratio are to change the first and the second breakup locations, the structure of the cylindrical column, and the time-dependent shape of the main droplet.; The density difference inhibits the formation and growth of surface waves along the interface. As the density ratio decreases, the vortex ring forms a highly stretched and more persistent fluid column before the first breakup occurs. For the case having the density ratio is much less than one, the viscosity ratio effects over the observed small density ratio effects are also examined in a limited way. If the dispersed phase is more viscous than the continuous phase, the density ratio effects dominate over the viscosity ratio in the interface breakup and drop formation processes. In contrast, when the continuous phase is more viscous than the dispersed phase the viscosity ratio plays a more important role in determining the outcome of vortex ring interaction.
机译:进行了使用Front-Tracking / Finite差分方法的数值模拟,以研究由于涡流环与零重力下的不混溶界面相互作用而引起的界面破裂和液滴形成过程。研究重点在于界面破裂的关键韦伯数以及粘度和密度比对相互作用的影响。首先,研究了涡旋环在形成后区域的传播特征和流动结构,以验证数值方案和数值模拟的分辨率。第二,确定了界面分裂和液滴形成过程中的Ohnesorge数效应。界面破坏的临界韦伯数随Ohnesorge数的增加而增加,临界韦伯数的这种变化归因于粘度的稳定作用。还发现通过相关性给出了形成一个液滴的临界韦伯数, We c 1 =(9.8868×10 3 b + 26.1。对于 We c 1 的情况,以及 We c 2的情况具有较大的Ohnesorge数,当液柱在下层塌陷时,界面破裂机制使界面弯曲。在较高的韦伯数下,液柱的不稳定性发展,导致形成两个或更多个液滴。数值结果表明,相关系数,喷嘴半径与扰动初始幅度之比 ln &parl0; a N z o &parr0; ,是Ohnesorge数的函数,随着Ohnesorge数的增加而减小。韦伯,奥尼索格数和 ln &parl0; a N z < / g> o &parr0; 在Ohnesirge数的幅度远小于1的情况下,在确定解体长度方面起着至关重要的作用。第三,研究了粘度和密度比对界面破裂和液滴形成过程的影响。界面的初始演变和整体涡度分布即使在粘度比发生较大变化时也非常相似。粘度比的显着影响是改变了第一和第二破碎位置,圆柱柱的结构以及主液滴的随时间变化的形状。密度差抑制了沿界面的表面波的形成和增长。随着密度比的降低,涡旋环在第一次破裂之前就形成了一个高度拉伸且持久的流体柱。对于密度比远小于1的情况,还以有限的方式检查了粘度比对观察到的小密度比的影响。如果分散相比连续相更粘,则在界面破裂和液滴形成过程中,密度比效应将超过粘度比。相反,当连续相比分散相粘稠时,粘度比在确定涡旋环相互作用的结果中起更重要的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号