首页> 外文学位 >Causal architecture, complexity and self-organization in time series and cellular automata.
【24h】

Causal architecture, complexity and self-organization in time series and cellular automata.

机译:时间序列和元胞自动机的因果架构,复杂性和自组织。

获取原文
获取原文并翻译 | 示例

摘要

All self-respecting nonlinear scientists know self-organization when they see it: except when we disagree. For this reason, if no other, it is important to put some mathematical spine into our floppy intuitive notion of self-organization. Only a few measures of self-organization have been proposed; none can be adopted in good intellectual conscience.; To find a decent formalization of self-organization, we need to pin down what we mean by organization. The best answer is that the organization of a process is its causal architecture—its internal, possibly hidden, causal states and their interconnections. Computational mechanics is a method for inferring causal architecture—represented by a mathematical object called the ε-machine—from observed behavior. The ε-machine captures all patterns in the process which have any predictive power, so computational mechanics is also a method for pattern discovery. In this work, I develop computational mechanics for four increasingly sophisticated types of process—memoryless transducers, time series, transducers with memory, and cellular automata. In each case I prove the optimality and uniqueness of the ε-machine's representation of the causal architecture, and give reliable algorithms for pattern discovery.; The ε-machine is the organization of the process, or at least of the part of it which is relevant to our measurements. It leads to a natural measure of the statistical complexity of processes, namely the amount of information needed to specify the state of the E-machine. Self-organization is a self-generated increase in statistical complexity. This fulfills various hunches which have been advanced in the literature, seems to accord with people's intuitions, and is both mathematically precise and operational.
机译:所有自重的非线性科学家在看到自组织时都知道自组织:除非我们不同意。因此,如果没有其他理由,那么将一些数学脊椎放入我们松散的直观的自组织概念中就很重要。仅提出了一些自组织措施;任何人都不能在良知的良知中接受。为了找到适当的自我组织形式,我们需要确定我们所说的组织意义。最好的答案是,流程的组织是其因果架构,即其内部,可能是隐藏的因果状态及其相互联系。 计算力学是一种从观察到的行为推断因果结构的方法,该因果结构由称为ε-机器的数学对象表示。机器捕获了过程中具有任何预测能力的所有模式,因此计算力学也是模式发现的一种方法。在这项工作中,我为四种日益复杂的过程类型开发了计算机制,即无内存换能器,时间序列,带内存的换能器和细胞自动机。在每种情况下,我都证明了因果结构的&epsi-机器表示的最优性和唯一性,并给出了用于模式发现的可靠算法。 “机器”是过程的组织,或者至少是与我们的测量相关的部分。它导致对过程的统计复杂性的自然度量,即指定E-machine状态所需的信息量。自组织是统计复杂性的自生增长。这满足了文献中已经提出的各种预感,似乎符合人们的直觉,并且在数学上是精确的和可操作的。

著录项

  • 作者

    Shalizi, Cosma Rohilla.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Physics General.; Mathematics.; Computer Science.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 269 p.
  • 总页数 269
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;数学;自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号