首页> 外文学位 >Simulations of convection/ventilation and diagnoses of water mass subduction/formation/transformation in the Japan/East Sea (JES): Impact of atmospheric forcing with different time-space scales .
【24h】

Simulations of convection/ventilation and diagnoses of water mass subduction/formation/transformation in the Japan/East Sea (JES): Impact of atmospheric forcing with different time-space scales .

机译:日本/东海(JES)的对流/通风模拟和水团俯冲/形成/转化的诊断:不同时空尺度下大气强迫的影响。

获取原文
获取原文并翻译 | 示例

摘要

In this study the impacts of surface atmospheric forcing of different time-space scales on water mass formation and spreading of formed water are investigated for the Japan/East Sea (JES). Three sets of atmospheric flux data were used; (1) fluxes from monthly averaged atmospheric variables (mont), (2) monthly means of 6-hourly fluxes ( empm), and (3) 6-hourly fluxes (syn). To calculate wind stress and heat fluxes, surface atmospheric variables (wind vectors, air temperature, dew point temperature, etc.) from the 6-hourly ECMWF (1° x 1°) data set, monthly mean cloud cover from COADS (1° x 1°), and daily MCSST (ca. 18 km) were utilized for the period from 1993 to 1997, the period of the CREAMS cruises.; The annual magnitudes of JES-averaged fluxes for the three different data sets are very different: the wind stress of mont is ca. 45% of that of the other two data sets (empm and syn). With the net heat flux of empm and syn, the JES loses heat from the surface with a range from −74 W/m2 in 1996 to −54 W/m2 in 1997. These results are consistent with those from Hirose et al. (1996) of −50 W/m 2 and Na et al. (1999) of −108 W/m2. While with the net heat flux of mont, however, the JES gains heat, ranging from 0.4 W/m2 in 1996 to 19 W/m2 in 1997.; The Princeton Ocean Model was implemented for JES (JES-POM) to simulate interannual, seasonal, and mesoscale variations in velocity and hydrographic fields. It reproduced the general features of the JES circulation. However, the air-sea forcing conditions do not appear to be directly responsible for the strong subduction in Area K and Area KB. In empm and syn, the “flux center” off Vladivostok is identified as the primary subduction area, though the positions and values of the localized maximum subduction rate are different year-to-year. There is no localized maximum subduction rate in the “flux center” off Vladivostok in mont for any of the simulated years, while it occurs in empm every year except 1997 and in syn for all five years.; During January 1997, mesoscale atmospheric forcing was applied to JES-POM and the mean MLD depths were deeper in the MM5 case along the Primorski coast and in the “flux center”. Overall, surface waters in the MM5 case become cooler and saltier in the convection areas. (Abstract shortened by UMI.)
机译:在这项研究中,研究了日本/东海(JES)不同时空尺度的地表大气强迫对水团形成和形成水扩散的影响。使用了三组大气通量数据。 (1)来自月平均大气变量( mont )的通量,(2)6小时通量的每月平均值( empm ),和(3)6小时通量( syn )。要计算风应力和热通量,地面大气变量(风矢量,空气温度,露点温度等),请从6小时ECMWF(1°x 1°)数据集中,从COADS的月平均云量(1° 1993年至1997年,即CREAMS巡游期间,每天使用MCSST(约1公里)(约18公里)。三个不同数据集的JES平均通量的年度量值非常不同: mont 的风应力为ca。其他两个数据集( empm syn )的45%。通过 empm syn 的净热通量,JES在1996年从表面散失热量,范围为-74 W / m 2 在1997年降至-54 W / m 2 。这些结果与Hirose等人的结果一致。 (1996)的功率为-50 W / m 2 ,Na等。 (1999)为-108 W / m 2 。然而,虽然JES的净热通量为 mont ,但其热量却从1996年的0.4 W / m 2 到19 W / m 2 ; 1997年。普林斯顿海洋模型为JES(JES-POM)实施,以模拟速度和水文领域的年际,季节和中尺度变化。它再现了JES发行的一般特征。但是,海空强迫条件似乎并不直接导致K区和KB区的强烈俯冲。在 empm syn 中,符拉迪沃斯托克(海参div)附近的“通量中心”被确定为主要俯冲区域,尽管局部最大俯冲率的位置和值在不同年份之间有所不同。 -年。在蒙特拉的符拉迪沃斯托克(海参div)附近的“通量中心”,在任何模拟年份都没有局部的最大俯冲率,而除1997年外,每年均在empm中发生,而在这5年中,它都在 syn 中出现。 1997年1月,中尺度大气强迫作用于JES-POM,沿滨海边疆区MM5情况和“通量中心”的平均MLD深度更深。总体而言,MM5箱中的地表水在对流区域变凉和变咸。 (摘要由UMI缩短。)

著录项

  • 作者

    Kang, HeeSook.;

  • 作者单位

    University of Miami.;

  • 授予单位 University of Miami.;
  • 学科 Physical Oceanography.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 海洋物理学;
  • 关键词

  • 入库时间 2022-08-17 11:47:08

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号