首页> 外文学位 >Non-destructive evaluation of TBC by electrochemical impedance spectroscopy.
【24h】

Non-destructive evaluation of TBC by electrochemical impedance spectroscopy.

机译:通过电化学阻抗谱对TBC进行无损评估。

获取原文
获取原文并翻译 | 示例

摘要

The objectives of this work focus on studying the feasibility of developing electrochemical impedance spectroscopy as an NDE methodology for quality assurance and post exposure inspection of TBC.; Principally air plasma sprayed TBC was investigated while APS dense vertically cracked TBC and electron beam physical vapor deposition sprayed TBC were also studied using EIS. It has been found that EIS has a great promise in TBC quality assurance and post-exposure assessment.; In the quality evaluation, EIS can detect TBC topcoat thickness, porosity, and kinds of defects (pore shape, cracks, or delamination). The TBC topcoat thickness shows a linear relationship with ceramic resistance. The TBC porosity has a linear relationship with ceramic capacitance. The kinds of defects in TBC topcoat can be assessed by the value of pore resistance.; In the post-exposure inspection, EIS can monitor the evolution of defects in the topcoat, porosity, the growth of TGO and thermal conductivity of TBC. There is an exponential relationship between thermal conductivity and electrochemical impedance or a logarithmic relationship between thermal conductivity and electrochemical conductance.; Investigation on thermal conductivity of TBC showed the specific heat or thermal conductivity of TBC has a logarithmic relationship with temperature, respectively. Exposure temperature and time are two important factors for an increase in thermal conductivity. The higher temperature and longer the exposure, the greater increase the thermal conductivity. High temperature exposure of TBC results in phase transformations, t-ZrO2 → m-ZrO2 and t-ZrO2 → c-ZrO2 and evolution of defect (ceramic sintering). Both the phase transformations and the sintering cause an increase in thermal conductivity. However, it has been found the phase transformations are only a conservative factor while the sintering is a substantial reason for an increase in thermal conductivity. A failure mode of TBC due to sintering was suggested.; An alternative electrolyte (trifluoroacetic acid) was investigated using EIS in order to be used as compatible or friendly solution to TBC. A similar characteristic EIS result was found using the alternative electrolyte compared with the commonly used electrolyte [Fe(CN)6]−3/[Fe(CN) 6]−4 in this work. It has indicated that a friendly electrolyte be viable for EIS technique to be used for non-destructive evaluation of TBC. Visualization of a flexible probe for EIS field detection has also been designed. (Abstract shortened by UMI.)
机译:这项工作的目标集中在研究开发电化学阻抗谱作为NDE方法进行TBC质量保证和暴露后检查的可行性。主要研究了空气等离子喷涂TBC,同时使用EIS研究了APS致密的垂直裂纹TBC和电子束物理气相沉积喷涂TBC。已经发现,EIS在TBC质量保证和暴露后评估中具有广阔的前景。在质量评估中,EIS可以检测到TBC面漆的厚度,孔隙率和各种缺陷(孔形状,裂纹或分层)。 TBC面漆的厚度与陶瓷电阻呈线性关系。 TBC孔隙率与陶瓷电容具有线性关系。 TBC面漆中的缺陷种类可以通过抗孔性值来评估。在曝光后检查中,EIS可以监控面漆中缺陷的演变,孔隙率,TGO的增长和TBC的导热性。热导率与电化学阻抗之间存在指数关系,或者热导率与电化学导电率之间具有对数关系。对TBC的导热系数的研究表明,TBC的比热或导热系数分别与温度成对数关系。暴露温度和时间是增加热导率的两个重要因素。温度越高,暴露时间越长,导热系数越大。 TBC的高温暴露导致相变,t-ZrO 2 →m-ZrO 2 和t-ZrO 2 →c-ZrO < sub> 2 和缺陷的演变(陶瓷烧结)。相变和烧结都引起导热率的增加。然而,已经发现,相变仅是保守因素,而烧结是热导率增加的重要原因。提出了由于烧结而导致的TBC失效模式。为了用作TBC的相容溶液或友好溶液,使用EIS研究了另一种电解质(三氟乙酸)。与常用电解质[Fe(CN) 6 ] -3 / [Fe(CN) 6相比,使用替代电解质发现了类似的特征EIS结果] −4 。已经表明,友好的电解质对于EIS技术用于TBC的无损评估是可行的。还设计了用于EIS现场检测的柔性探头的可视化。 (摘要由UMI缩短。)

著录项

  • 作者

    Zhang, Jianqi.;

  • 作者单位

    University of Central Florida.;

  • 授予单位 University of Central Florida.;
  • 学科 Engineering Materials Science.; Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号