首页> 外文学位 >Modeling of THM and HAA formation in Missouri waters upon chlorination.
【24h】

Modeling of THM and HAA formation in Missouri waters upon chlorination.

机译:密苏里州水中氯化物THM和HAA形成的模型。

获取原文
获取原文并翻译 | 示例

摘要

The more stringent drinking water Disinfection By-Product (DBP) regulations have led utilities to examine and optimize their disinfection processes. Practical models for THM and HAA formation will assist utilities in minimizing DBP formation.; A parallel first-order reaction model was used to fit the chlorine residual data. The results showed that all tested surface waters were kinetically similar. Values of kR for raw surface waters ranged from 1.25 to 4.09 hr −1 and for treated waters from 1.93 to 3.07 hr−1 . Values of kS for raw waters ranged from 0.011 to 0.022hr −1 and for treated waters from 0.012 to 0.026. The main kinetic differences among water samples were from the rapid chlorine decay (k R). Alum treatment substantially increased the rapid reacting fraction functionality for all winter waters with f averaging 24% after treatment.; THM formation rates were initially rapid corresponding with the rapid consumption of chlorine followed by a slower, declining rate of production. On average 65% of the TTHM was formed within 24 hours for all bulk water samples. DCAA, and TCAA were the main species among the nine HAAs. Approximately 50% of the HAA9 observed after 120 hours actually formed during the first 8 hours. Brominated species were preferentially formed in the early part of the reaction period and maintained the same concentrations after 24 hours.; A new mechanistic model was developed to predict the TTHM and HAA 9 formation in raw and alum treated waters based on the decay rate constants obtained in the chlorine decay modeling. TTHM yield coefficients ranged from 22.0 to 48.0 μg-TTHM/mg-Cl2 for all raw and alum treated waters. Alum treatment reduced the TTHM yield coefficient by 14%. HHA9 yield coefficients ranged from 15.3 to 27.7 μg-HAA9/mg-Cl2. The yield coefficient was reduced by 33% with alum treatment.; HAA9/TTHM mass ratio ranged from 0.62 to 0.87 for raw water and from 0.50 to 0.69 for treated water. On average HAA9 to TTHM ratio was decreased 0.14 by alum coagulation. In the DBP formation processes, a small trend decrease was observed for HAA9/TTHM ratio with time.; A decrease in the Bromine Incorporation Factor (BIF) values with time in the THMs and HAAs formation processes was observed. The alum coagulation process increased the BIF values of DBP.; Raw waters were fractionated using various size UF membranes. Chlorine decay kinetics, THMs formation potential and formation kinetics in various UF fraction waters were also investigated in this study. UV254 value changed with time of UF fractionated waters.; No influences for inorganic compounds (NaHCO3, NaCl, Na 2SO4, MgSO4, ZnSO4, CaCl2, and KBr) were found. Cu(II) and Co(II) did, however, increase the hypochlorite decomposition.
机译:更加严格的饮用水消毒副产品(DBP)法规已导致公用事业部门检查和优化其消毒过程。 THM和HAA形成的实用模型将有助于公用事业最大限度地减少DBP形成。使用平行的一级反应模型拟合氯残留数据。结果表明,所有测试的地表水在动力学上都相似。原始地表水的k R 值范围为1.25至4.09 hr -1 ,处理水的k R 值范围为1.93至3.07 hr -1 。原水的k S 值介于0.011至0.022hr -1 ,处理水的k S 值介于0.012至0.026。水样之间的主要动力学差异来自氯的快速衰减(k R )。明矾处理大大提高了所有冬季水的快速反应馏分功能,处理后的 f 平均为24%。 THM的形成速率最初是快速的,与氯的快速消耗相对应,随后是生产速率的缓慢下降。所有散装水样品在24小时内平均形成了TTHM的65%。 DCAA和TCAA是9个HAA中的主要物种。 120小时后观察到的大约50%的HAA 9 实际上是在最初的8小时内形成的。溴化物优先在反应初期形成,并在24小时后保持相同的浓度。建立了一种新的机理模型,根据氯衰减模型中得到的衰减速率常数,预测原水和明矾处理水中的TTHM和HAA 9 的形成。对于所有生水和明矾处理过的水,TTHM产量系数的范围为22.0至48.0μg-TTHM/ mg-Cl 2 。明矾处理使TTHM产量系数降低了14%。 HHA 9 的产量系数范围为15.3至27.7μg-HAA9/ mg-Cl 2 。经过明矾处理,产量系数降低了33%。 HAA 9 / TTHM的质量比,原水为0.62至0.87,处理水为0.50至0.69。通过明矾凝结,平均HAA 9 与TTHM的比率降低了0.14。在DBP的形成过程中,HAA 9 / TTHM比值随时间的变化趋势较小。在THM和HAA形成过程中,观察到溴结合因子(BIF)值随时间降低。明矾凝结过程增加了DBP的BIF值。使用各种尺寸的超滤膜分馏原水。在这项研究中,还研究了各种UF级分水中的氯衰变动力学,THMs形成潜力和形成动力学。 UF分馏水的UV 254 值随时间变化。对无机化合物(NaHCO 3 ,NaCl,Na 2 SO 4 ,MgSO 4 ,ZnSO 4 ,CaCl 2 和KBr)。但是,Cu(II)和Co(II)确实增加了次氯酸盐的分解。

著录项

  • 作者

    Gang, Dianchen.;

  • 作者单位

    University of Missouri - Columbia.;

  • 授予单位 University of Missouri - Columbia.;
  • 学科 Engineering Civil.; Environmental Sciences.; Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 388 p.
  • 总页数 388
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;环境科学基础理论;环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号