首页> 外文学位 >Model reduction and robust controller design scheme for structural acoustics.
【24h】

Model reduction and robust controller design scheme for structural acoustics.

机译:结构声学的模型简化和鲁棒控制器设计方案。

获取原文
获取原文并翻译 | 示例

摘要

As science and technology progress, people seek a better quality of environment. Sound and vibration have become one of the important factors for determining such quality. Many engineers in acoustics, structures, electronics, materials and mathematics have explored control and structural acoustics to reduce the level of sound and vibration that surround our living and working environments. Structural acoustics explains the interaction between acoustic wave and structural vibration. This interaction involves either sound transmission or reflection from the structure. Proper control of structural vibration can control the reflection and/or transmission of the sound wave. There have been many research efforts to develop simple, reliable, high performance and wide operation frequency band control algorithms and control devices. Much progress and many achievements in this technology have been reported in related literature. Still, these reports show the need for further development in practical and commercially feasible application.; This thesis research was devoted to developing a feasible control system for structural acoustics. Simplicity and robustness of the system are the key issues in the controller design concept. This study was also devoted to building a bridge between state space based control theories with structural acoustics. Simplicity of structure models and controllers was realized by developing the concept of the Modal Hankel Singular Value (MHSV) based model reduction method and fabrication of analog controllers. The MHSV is a modified version of the Hankel Singular Value (HSV) that is popularly used for model reduction in many state space-based control applications. However, MHSV is developed for a modal coordinates system that is more useful in describing vibrating structures than state space. Analog controllers are designed from the transfer functions of controllers, which has great advantage over digital controllers in simplicity and cost.; Secondly, robust control theory is exploited for the design of controllers. In contrast to optimal control, which is designed to minimize the square norm of performance index variables, this control theory aims at reduction of the infinity norm of the variables. It delivers not only sufficient reduction of the variables in a specified frequency band, but also strong robustness in the control performance. In addition, the uncertainty of the vibrating structure model is included in the controller design in terms of modal parameters. This results in a control system that is robust to the uncertainty of modal parameters. Hence, the control system will be more reliable in a real application. Uncertainty analysis of the control systems was added to quantitatively describe the robustness of the control system. It identifies which parameter of the model is critical to the control performance. It is expected that this analysis can provide a guideline for further development of a more robust control system.; This simple and robust controller design for structural acoustics is applied for controls of sound transmission and sound reflection, numerically and experimentally. MHSV shows good model reduction of finite element based structure models. Numerical and experimental results of both transmission control and reflection control show good agreement, which supports the validity of the proposed control methods.; The analog control circuit is easier and cheaper to be miniaturized in a microchip than digital one. The proposed controller design method for structural acoustics application would be more practical if such a miniaturized chip were used as a controller.
机译:随着科学技术的进步,人们寻求更好的环境质量。声音和振动已成为确定这种质量的重要因素之一。声学,结构,电子,材料和数学领域的许多工程师已经探索了控制和结构声学,以降低围绕我们的生活和工作环境的声音和振动水平。结构声学解释了声波与结构振动之间的相互作用。这种相互作用涉及声音的传输或结构的反射。适当控制结构振动可以控制声波的反射和/或传输。为了开发简单,可靠,高性能和宽工作频带的控制算法和控制设备,已经进行了许多研究工作。相关文献报道了该技术的许多进步和许多成就。尽管如此,这些报告表明仍需要在实际和商业上可行的应用中进一步开发。本文的研究致力于开发一种可行的结构声学控制系统。系统的简单性和鲁棒性是控制器设计概念中的关键问题。这项研究还致力于在基于状态空间的控制理论与结构声学之间架起一座桥梁。通过开发基于模态汉高奇异值(MHSV)的模型简化方法的概念和模拟控制器的制造,实现了结构模型和控制器的简单性。 MHSV是Hankel奇异值(HSV)的修改版本,在许多基于状态空间的控制应用中通常用于模型简化。但是,MHSV是为模态坐标系开发的,它比状态空间在描述振动结构时更有用。模拟控制器是根据控制器的传递函数设计的,在简单性和成本方面比数字控制器具有很大的优势。其次,鲁棒控制理论被用于控制器的设计。与旨在将性能指标变量的平方范数最小化的最优控制相反,该控制理论旨在减少变量的无穷范数。它不仅可以充分减少指定频段内的变量,还可以提供强大的控制性能。另外,根据模态参数,振动结构模型的不确定性也包括在控制器设计中。这导致对模态参数不确定性具有鲁棒性的控制系统。因此,该控制系统在实际应用中将更加可靠。添加了控制系统的不确定性分析以定量描述控制系统的鲁棒性。它确定模型的哪个参数对控制性能至关重要。预期该分析可以为进一步开发更强大的控制系统提供指导。这种用于结构声学的简单而强大的控制器设计可用于数值和实验中的声音传输和声音反射控制。 MHSV显示出基于有限元的结构模型的良好模型简化。透射控制和反射控制的数值和实验结果吻合良好,证明了所提控制方法的有效性。与数字控制芯片相比,模拟控制电路在微型芯片中更容易被小型化和便宜化。如果将这种小型化的芯片用作控制器,则所提出的用于结构声学应用的控制器设计方法将更加实用。

著录项

  • 作者

    Chang, Woosuk.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Mechanical.; Physics Acoustics.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;声学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号