首页> 外文学位 >Advances in atomic force microscopy for the study of biological systems.
【24h】

Advances in atomic force microscopy for the study of biological systems.

机译:原子力显微镜在生物系统研究中的进展。

获取原文
获取原文并翻译 | 示例

摘要

This thesis deals with the development of novel techniques for the improved study of biological systems using atomic force microscopy (AFM). Two separate areas are covered in this work: (i) solution nanomanipulation and (ii) the use of AFM to measure protein-protein interactions. The nanoManipulator combines AFM with a computer assisted interface to allow manipulations of nanoscopic objects. Solution nanomanipulation of biological macromolecules is limited by the poor reliability of the imaging technique. Solution imaging using resonant techniques for AFM is greatly simplified by driving the cantilever directly. I have taken advantage of the temperature-sensitive bending properties of metal-coated silicon nitride cantilevers to induce vibrations in the lever using a modulated laser. The capabilities of this novel technique are demonstrated by the manipulation of DNA on a mica surface under solution.; The second area of research deals with the use of AFM as a tool to study protein-protein interactions. I have successfully used the imaging capabilities of the AFM to determine protein-protein association constants. I have developed a method to determine the molecular weight of a protein based on its volume when the protein is imaged with the AFM. Based on the measured volume, the fraction of monomers as dimers was determined for DNA helicase UvrD, and the dissociation constant (Kd) for the helicase was calculated. I determined a Kd for UvrD of 1.4 μM, which is in good agreement with published Kd data obtained from analytical ultracentrifugation (AUC) studies.; The volume analysis method can also be used to study the assembly state of proteins that cannot be studied using other techniques. Techniques such as AUC require high concentration of protein. Often times the protein does not remain soluble at these higher concentrations. The volume analysis method described in this thesis allows for much lower protein concentrations to be used. I present preliminary Kd data for UvrD in solution conditions which until now were unknown.
机译:本文涉及利用原子力显微镜(AFM)改进生物系统研究的新技术的发展。这项工作涵盖两个单独的领域:(i)溶液纳米操作和(ii)使用AFM来测量蛋白质-蛋白质相互作用。 nanoManipulator将AFM与计算机辅助界面相结合,可以操作纳米物体。生物大分子的溶液纳米操作受到成像技术可靠性差的限制。通过直接驱动悬臂,大大简化了使用共振技术进行AFM的溶液成像。我已经利用了金属涂层的氮化硅悬臂的温度敏感性弯曲特性来利用调制激光在杠杆中引起振动。通过在溶液中对云母表面上的DNA进行操作,证明了这种新技术的功能。第二个研究领域涉及使用AFM作为研究蛋白质间相互作用的工具。我已经成功地使用了AFM的成像功能来确定蛋白质-蛋白质缔合常数。我已经开发出一种方法,可以在用AFM对蛋白质成像时根据其体积确定蛋白质的分子量。根据测得的体积,确定DNA解旋酶UvrD的单体作为二聚体的分数,并计算解旋酶的解离常数(K d )。我确定UvrD的K d 为1.4μM,这与从分析超速离心(AUC)研究获得的已发表的K d 数据非常吻合。体积分析方法还可以用于研究无法使用其他技术研究的蛋白质的组装状态。诸如AUC之类的技术需要高浓度的蛋白质。通常,蛋白质在这些较高浓度下不保持可溶。本文描述的体积分析方法允许使用低得多的蛋白质浓度。我提供了迄今为止在未知条件下的UvrD的初步K d 数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号