首页> 外文学位 >A study of wellbore stability in shales including poroelastic, chemical, and thermal effects.
【24h】

A study of wellbore stability in shales including poroelastic, chemical, and thermal effects.

机译:对页岩中井眼稳定性的研究,包括孔隙弹性,化学和热效应。

获取原文
获取原文并翻译 | 示例

摘要

Shale is always a troublesome rock during oil and gas drilling operations. Shale (in)stability has been of great concern in the oil industry for decades. It has also been a costly problem and has perplexed the industry for many years. A better understanding of the wellbore stability mechanism in shales is imperative. The object of this study is to develop a comprehensive model to deal with borehole instability problems in shales.; Wellbore stability problems are caused by changes in near wellbore pore pressure and rock stresses. The excess of rock effective stresses over the rock strength can cause collapse (shear) or breakdown (tensile) failure of the drilled formation. This imbalance between the rock stress and rock strength always happens when the in-situ rock is drilled out and is replaced by the drilling fluid. Pore pressure alterations due to osmotic effects are a function of the water activity in the drilling fluid and the membrane efficiency of the shale.; In this work, thermo-mechanical stresses coupled with the osmotic contributions are used to compute conditions under which the wellbore becomes unstable. The osmotic contribution is added to the hydraulic potential to form the net driving force of the fluid flow.; Changes in pore pressure have been observed in shale experiments. An alteration of the shale strength was also observed when shales are exposed to different drilling fluids. It is necessary to consider shale strength alterations when inspecting the wellbore stability status and determining critical mud weights.; Thermal diffusion inside the drilled formation induces additional pore pressure and rock stress changes and consequently affects shale stability. Thermal effects are important because thermal diffusion into shale formations occurs more quickly than hydraulic diffusion and thereby dominates during early times. Rock temperature and pore pressure can be partially decoupled for shale formations. The partially decoupled problem can be solved analytically under appropriate inner and boundary conditions. The analytical solutions are consistent with the finite-difference solution to the coupled problem. The decoupled temperature and pore pressure variables are programmed to calculate rock stresses and wellbore failure status.; User-friendly input and output interfaces are developed in order to implement this model in the field. This model can also be applied to other petroleum rocks like sandstones.
机译:在石油和天然气钻井作业中,页岩始终是麻烦的岩石。数十年来,页岩(不稳定)稳定性一直是石油工业中极为关注的问题。这也是一个代价高昂的问题,困扰了整个行业多年。必须更好地了解页岩中的井眼稳定机制。本研究的目的是开发一个综合模型来处理页岩中的井眼失稳问题。井眼稳定性问题是由近井眼孔隙压力和岩石应力的变化引起的。岩石有效应力超过岩石强度会导致已钻地层坍塌(剪切)或击穿(拉伸)破坏。岩石应力和岩石强度之间的这种不平衡总是在钻出原位岩石并由钻井液代替时发生。渗透作用引起的孔隙压力变化是钻井液中水活度和页岩膜效率的函数。在这项工作中,热机械应力与渗透作用相结合,用于计算井眼变得不稳定的条件。渗透作用加到水力势上,以形成流体流的净驱动力。在页岩实验中已经观察到孔隙压力的变化。当页岩暴露于不同的钻井液时,也观察到页岩强度的变化。检查井眼稳定性状态并确定临界泥浆重量时,必须考虑页岩强度的变化。钻探地层内部的热扩散会引起额外的孔隙压力和岩石应力变化,从而影响页岩稳定性。热效应很重要,因为热扩散到页岩地层中的发生比水力扩散快,因此在早期占主导地位。对于页岩地层,岩石温度和孔隙压力可以部分解耦。可以在适当的内部和边界条件下解析解决部分解耦的问题。解析解与耦合问题的有限差分解一致。将解耦的温度和孔隙压力变量编程为计算岩石应力和井筒破坏状态。开发了用户友好的输入和输出界面,以便在现场实施此模型。该模型也可以应用于其他石油岩石,例如砂岩。

著录项

  • 作者

    Chen, Guizhong.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Petroleum.; Energy.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 石油、天然气工业;能源与动力工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号