首页> 外文学位 >Collisionless relaxation in beam-plasma systems.
【24h】

Collisionless relaxation in beam-plasma systems.

机译:束流等离子体系统中的无碰撞松弛。

获取原文
获取原文并翻译 | 示例

摘要

This thesis reports the results from the theoretical investigations, both numerical and analytical, of collisionless relaxation phenomena in beam-plasma systems. Many results of this work can also be applied to other lossless systems of plasma physics, beam physics and astrophysics.; Different aspects of the physics of collisionless relaxation and its modeling are addressed. A new theoretical framework, named Coupled Moment Equations (CME), is derived and used in numerical and analytical studies of the relaxation of second order moments such as beam size and emittance oscillations. This technique extends the well-known envelope equation formalism, and it can be applied to general systems with nonlinear forces. It is based on a systematic moment expansion of the Vlasov equation. In contrast to the envelope equation, which is derived assuming constant rms beam emittance, the CME model allows the emittance to vary through coupling to higher order moments. The CME model is implemented in slab geometry in the absence of return currents. The CME simulation yields rms beam sizes, velocity spreads and emittances that are in good agreement with particle-in-cell (PIC) simulations for a wide range of system parameters.; The mechanism of relaxation is also considered within the framework of the CME system. It is discovered that the rapid relaxation or beam size oscillations can be attributed to a resonant coupling between different modes of the system. A simple analytical estimate of the relaxation time is developed.; The final state of the system reached after the relaxation is complete is investigated. New and accurate analytical results for the second order moments in the phase-mixed state are obtained. Unlike previous results, these connect the final values of the second order moments with the initial beam mismatch. These analytical estimates are in good agreement with the CME model and PIC simulations. Predictions for the final density and temperature are developed that show main important features of the spatial dependence of the profiles. Different aspect of the final coarse-grained state such as its non-thermal nature, the appearance of ‘hot’ regions on the periphery and the core-halo character of the density are investigated.
机译:本文报道了从理论研究,无论是数值上还是分析上,束流-等离子体系统中无碰撞弛豫现象的结果。这项工作的许多结果还可以应用于等离子物理学,射束物理学和天体物理学的其他无损系统。讨论了无碰撞松弛及其建模的物理学的不同方面。推导了一个新的理论框架,称为耦合矩方程(CME),并将其用于二阶矩弛豫的数值和分析研究,例如束大小和发射振荡。此技术扩展了众所周知的包络方程形式,可以应用于具有非线性力的一般系统。它基于Vlasov方程的系统矩展开。与包络方程式相反,该方程式是在假设均方根光束发射恒定的情况下得出的,而CME模型则允许通过耦合至更高阶矩来改变发射率。 CME模型是在没有回流的情况下以板坯几何形状实现的。 CME仿真产生的均方根光束大小,速度分布和发射率与广泛的系统参数与单元粒子(PIC)仿真非常一致。在CME系统的框架内还考虑了放松机制。已经发现,快速弛豫或波束尺寸振荡可归因于系统不同模式之间的共振耦合。建立了弛豫时间的简单分析估计。研究完成松弛后达到的系统最终状态。获得了相混合状态下二阶矩的新的准确分析结果。与先前的结果不同,这些将第二阶矩的最终值与初始光束失配联系在一起。这些分析估计值与CME模型和PIC模拟非常吻合。已开发出最终密度和温度的预测,这些预测显示出轮廓的空间依赖性的主要重要特征。研究了最终粗粒状态的不同方面,例如其非热性质,外围“热”区域的出现以及密度的芯晕特征。

著录项

  • 作者

    Backhaus, Ekaterina Yu.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号