首页> 外文学位 >Monitoring succession in temperate conifer forests with remote sensing: Implications for terrestrial carbon budgets.
【24h】

Monitoring succession in temperate conifer forests with remote sensing: Implications for terrestrial carbon budgets.

机译:用遥感监测温带针叶林的演替:对陆地碳预算的影响。

获取原文
获取原文并翻译 | 示例

摘要

Forest succession is a fundamental ecological process which has significant implications for sustainable natural resource management as well as ecosystem biological, biophysical and biogeochemical processes. The capacity for carbon sequestration of terrestrial ecosystems is influenced by forest successional stage. A new forest ecosystem carbon flux model, which combines components of the ZELIG and CENTURY models, shows that net ecosystem production is strongly age dependent. A typical simulated forest stand in the Pacific Northwest of the United States can be a carbon sink for about 200 years, and eventually becomes carbon neutral. Based on a simplified age structure for the forests in Oregon and Washington, the ten million hectares of commercial forests were a significant carbon source from 1890 to 1990. Due to regrowth, this region is becoming a carbon sink and will remain one unless harvest rates are increased.; Improved knowledge of the age distribution of forests would enhance our ability to estimate regional terrestrial carbon budgets. Remote sensing offers the opportunity to map stand age over large areas, but existing methods are essentially empirical and thus difficult to apply outside the domain in which they are calibrated. A more comprehensive solution comes from integrating a forest ecosystem dynamics model (ZELIG) with a canopy reflectance model (GORT) to understand better the manifestation of forest succession in optical imagery. Changes in the reflectance of forest stands through time are highly nonlinear and strongly influenced by the understory reflectance over the first 15–20 years. Analyses of multitemporal Landsat TM data for the H. J. Andrews Experimental Forest have found the spectral/temporal patterns for young stands match the GORT-ZELIG simulation. Extension of the GORT-ZELIG linkage to the spatial domain reveals spatial patterns of multiresolution optical imagery are diagnostic of tree size. Tests using high resolution IKONOS imagery show the expected behavior of image variance as a function of resolution and indicate the potential for future automated mapping of tree size. Overall, both the spectral/temporal and spatial domains exhibit signatures related to stand age indicating the potential for better mapping of forest successional stage, and thus for improving estimates of regional carbon budgets.
机译:森林演替是一个基本的生态过程,对可持续自然资源管理以及生态系统生物,生物物理和生物地球化学过程具有重要意义。陆地生态系统的固碳能力受森林演替阶段的影响。一个新的森林生态系统碳通量模型,结合了ZELIG和CENTURY模型的组成部分,表明净生态系统生产与年龄密切相关。在美国西北太平洋地区,典型的模拟林分可能是大约200年的碳汇,并最终变为碳中和。根据俄勒冈州和华盛顿州森林的简化年龄结构,从1890年到1990年,一千万公顷的商品林是重要的碳源。由于再生长,该地区正在成为碳汇,除非收获率达到增加。;进一步了解森林的年龄分布将提高我们估算区域陆地碳预算的能力。遥感提供了绘制大面积林分年龄的机会,但是现有方法本质上是经验性的,因此难以在校准它们的领域之外应用。将森林生态系统动力学模型(ZELIG)与树冠反射模型(GORT)集成在一起,可以更好地解决问题,从而更好地了解光学影像中森林演替的表现。随着时间的推移,林分反射率的变化是高度非线性的,并且在最初的15至20年中受到林下反射率的强烈影响。对H. J. Andrews实验林的多时相Landsat TM数据的分析发现,幼林的光谱/时空模式与GORT-ZELIG模拟相匹配。通过将GORT-ZELIG链接扩展到空间域,可以揭示多分辨率光学图像的空间模式是对树木大小的诊断。使用高分辨率IKONOS影像的测试表明,影像变化的预期行为是分辨率的函数,并指出了将来自动映射树大小的可能性。总体而言,光谱/时域和空间域均表现出与林分年龄有关的特征,表明有可能更好地绘制森林演替阶段,从而改善区域碳预算的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号