首页> 外文学位 >Robust receiver design for RF communication and underwater acoustic communication.
【24h】

Robust receiver design for RF communication and underwater acoustic communication.

机译:坚固耐用的接收器设计,用于RF通信和水下声学通信。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation includes two parts: robust receiver design for wireless radio frequency (RF) communication, and robust receiver design for underwater acoustic (UWA) communication. In the first part, four aspects including fading channel modeling, Doppler spread estimation, channel estimation, and (turbo) equalization, are investigated for a common digital receiver. The general methodology of study is theoretical analysis and numerical simulation. In the second part, different receiver designs are proposed for underwater acoustic communication, with their robustness tested by experimental data collected at several undersea field trials.;An equivalent discrete-time channel model is the basis for robust receiver design in any digital communication system. The work on channel modeling highlights the loss of separability property of the discrete-time channel scattering function, a result that is commonly overlooked. The conditions for the validity of the separability property is provided, under which efficient channel simulators can be used.;Doppler spread contains information about fading channels, thus is an important system parameter guiding robust receive design. A Doppler spread estimation algorithm is proposed, for the prevailing orthogonal frequency division multiplexing (OFDM) systems undergoing Rayleigh or Rician fading. The estimator belongs to the class of "method of moment", and it estimates the Doppler spread with the auto-covariance function of the received signal power.;Channel estimation is critical for equalization and detection. A pilot-aided channel estimation algorithm is presented for OFDM systems with non-ideal effects including both carrier frequency offset (CFO) and phase noise. It estimates and compensates the CFO first, and then performs joint channel estimation and phase noise suppression with the maximum a posteriori (MAP) criterion. The CFO compensation and phase noise suppression improves the channel estimation accuracy.;The work on equalization focuses on turbo (iterative) equalization, and discusses two turbo equalization schemes for multiple-input, multiple-output (MIMO) systems. The first scheme enhances existing linear minimum mean square error (LMMSE) turbo equalizer, by utilizing not only the a priori information at the input of the equalizer but also the a posteriori information obtained when the equalization progresses. With the new equalization mechanism, the detection ordering matters as to the equalization performance, and has been exploited to further enhance the detection performance. The second scheme develops a non-linear block decision-feedback equalizer (BDFE) with reliability-based successive soft interference cancelation (SSIC). The symbol reliability information is calculated directly with the a priori input, incurring minimum extra cost.;UWA communication is much more challenging than RF communication due to its limited available bandwidth, long delay spread, fast temporal variation and significant Doppler effect. Signal detection under such scenarios, is thus very difficult. The remaining part of the dissertation discusses robust receiver design for UWA communication. Two design schemes have been proposed. The first scheme adopts MIMO linear equalizer (LE) working with a group-wise phase compensator. It was tested with experimental data collected at Kauai, Hawaii, in September 2005, and Saint Margarets Bay, Nova Scotia, Canada, in May 2006. Experimental results show that it was robust under different communication environments. The second scheme adopts the developed MIMO turbo BDFE mentioned above, with its robustness and performance tested by experimental data collected at the coast of Martha's Vineyard, Edgartown, MA, in October 2008, and Gulf of Mexico in July 2008, respectively.
机译:本论文包括两部分:针对无线射频通信的鲁棒接收机设计和针对水下声学通信的鲁棒接收机设计。在第一部分中,研究了常见数字接收机的四个方面,包括衰落信道建模,多普勒扩展估计,信道估计和(turbo)均衡。一般的研究方法是理论分析和数值模拟。在第二部分中,提出了用于水下声通信的不同接收机设计,并通过在多个海底现场试验中收集的实验数据测试了它们的鲁棒性。等效的离散时间信道模型是任何数字通信系统中鲁棒接收机设计的基础。通道建模方面的工作突出了离散时间通道散射函数的可分离性的损失,这一结果通常被忽略。提供了可分离性属性有效性的条件,在此条件下可以使用有效的信道模拟器。多普勒扩展包含有关衰落信道的信息,因此是指导鲁棒接收设计的重要系统参数。针对正在经历瑞利或里斯衰落的主流正交频分复用(OFDM)系统,提出了一种多普勒扩展估计算法。估计器属于“矩量法”类别,它利用接收信号功率的自协方差函数来估计多普勒展宽。信道估计对于均衡和检测至关重要。针对具有非理想影响的OFDM系统,提出了一种导频辅助的信道估计算法,包括载波频率偏移(CFO)和相位噪声。它首先估计并补偿CFO,然后以最大后验(MAP)标准执行联合信道估计和相位噪声抑制。 CFO补偿和相位噪声抑制提高了信道估计的准确性。均衡方面的工作主要集中在turbo(迭代)均衡上,并讨论了用于多输入多输出(MIMO)系统的两种turbo均衡方案。第一种方案不仅通过利用均衡器输入处的先验信息,而且利用在均衡进行时获得的后验信息来增强现有的线性最小均方误差(LMMSE)Turbo均衡器。通过新的均衡机制,检测顺序对于均衡性能至关重要,并且已被用来进一步提高检测性能。第二种方案开发了具有基于可靠性的连续软干扰消除(SSIC)的非线性块决策反馈均衡器(BDFE)。符号可靠性信息是通过先验输入直接计算的,从而将额外成本降至最低。UWA通信由于其可用带宽有限,时延扩展长,快速的时间变化和明显的多普勒效应而比RF通信更具挑战性。因此,在这种情况下的信号检测非常困难。本文的其余部分讨论了用于UWA通信的鲁棒接收机设计。已经提出了两种设计方案。第一种方案采用MIMO线性均衡器(LE)与逐组相位补偿器一起工作。使用2005年9月在夏威夷考艾岛和2006年5月在加拿大新斯科舍省的Saint Margarets湾收集的实验数据对它进行了测试。实验结果表明,该方法在不同的通信环境下均具有较强的鲁棒性。第二种方案采用上述开发的MIMO Turbo BDFE,其稳健性和性能通过分别在2008年10月在马萨诸塞州埃德加敦的玛莎葡萄园岛海岸和2008年7月在墨西哥湾采集的实验数据进行了测试。

著录项

  • 作者

    Tao, Jun.;

  • 作者单位

    University of Missouri - Columbia.;

  • 授予单位 University of Missouri - Columbia.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号