首页> 外文学位 >A Three-dimensional Water Quality Model for Estuary Environments.
【24h】

A Three-dimensional Water Quality Model for Estuary Environments.

机译:河口环境的三维水质模型。

获取原文
获取原文并翻译 | 示例

摘要

Estuary environments are one of the least studied, but most threatened ecosystems on the planet. Decades of human interaction and alteration of estuaries have lead to the degradation of these vital ecosystems, and many estuaries worldwide require immediate management strategies to mitigate the damage. One of the only unifying characteristics of all estuaries is their location at the interface between land and sea. Estuaries drain large watersheds and as such mediate a large flux of flow, sediments and nutrients from the land and rivers to the oceans and means these ecosystems are subject to a number of important physical forces, including river flow, tidal energy and wind forces. This temporal and spatial variability produces a set of biogeochemical factors unique to each estuary, and understanding the causes and possible solutions for problems that arise in estuaries requires a complete understanding of these interacting factors.;In order to alleviate the challenge facing estuaries, it is critical to understand how the physical and biological processes interact. Although a great wealth of information can be gathered from fieldwork, to investigate future solutions an efficient computer model that can capture the most important processes occurring in the system is vital. In the case of estuary systems where the interacting forces (wind, tides, river and salinity and temperature induced stratification) are complex and unsteady, a three-dimensional model is necessary. In this study, a three-dimensional water quality model (SI3DWQ) is developed as a coupled model to an existing hydrodynamic model (SI3D). The water quality modules added to the model use velocity, water depth and water temperature information solved in the hydrodynamic module to simulate the advective and diffusive transport of a number of constituents, including: dissolved oxygen, nitrogen species, phosphorus species, phytoplankton as chlorophyll-a, suspended sediment, and conservative and non-conservative tracers.;After development of the water quality module, SI3DWQ was used to investigate water quality problems facing the San Francisco Bay Estuary. The first two apply the model to the Stockton Deep Water Ship Channel (DWSC), a stretch of the San Joaquin River that has been subject to low dissolved oxygen concentrations since the 1960s. The model was first calibrated to a SF6 tracer study to determine the transport dynamics in the DWSC. The tracer modeling study revealed the importance of the turning basin, especially at low river flows in the residence time of the DWSC. After completion of the tracer study, the water quality model application to the DWSC was expanded to include phytoplankton, nitrogen and phosphorus species and dissolved oxygen to investigate the important physical and biogeochemical processes contributing to low dissolved oxygen in the reach. The model application identified the importance of stratification processes in the dissolved oxygen concentrations and highlighted the importance of the turning basin in the mixing dynamics of the entire system. These model applications can be used to help guide management decisions for the San Joaquin River and DWSC.;The last application of the model uses SI3D to simulate a hypothetical permanently flooded Delta island and the surrounding channels to determine the potential effects of geometric characteristics of a flooded island in the Delta on its biological productivity and establishing hydrodynamic and water quality background for scientifically based habitat restoration. The results identify several points to consider in managing future permanently flooded Delta islands: (1) a flooded Delta island can either be a sink of chlorophyll-a or produce population levels that support secondary production; (2) depth of a flooded island is important, with shallower (3m and 4m) subsided islands supporting larger populations of phytoplankton; (3) two island breaches export higher concentrations of phytoplankton than single-breached polders; (4) islands oriented perpendicular to the channel support greater concentrations and fluxes of chlorophyll.;The results from the modeling applications show that the newly developed SI3DWQ can successfully be used to investigate a wide range of water quality problems in estuaries. The results from the studies can be used by managers and policy makers in the San Francisco Bay Estuary to help guide decisions about the future of this complex system. The success of the model applications to the San Francisco Estuary suggests that the model can be applied to other estuaries worldwide to help determine solutions for these critical ecosystems.
机译:河口环境是地球上研究最少,但受威胁最大的生态系统之一。数十年的人类互动和河口变更导致了这些重要生态系统的退化,全世界许多河口都需要立即采取管理策略以减轻破坏。所有河口的唯一统一特征之一是它们在陆地和海洋之间的界面处的位置。河口排泄了大片流域,因此介导了从陆地和河流流向海洋的大量水流,沉积物和养分,这意味着这些生态系统受到许多重要的物理力的作用,包括河水流量,潮汐能和风力。这种时空变化产生了每个河口特有的一组生物地球化学因素,并且要了解河口出现的问题的原因和可能的解决方案,需要对这些相互作用因素有一个完整的理解。为了减轻河口面临的挑战,了解物理和生物过程如何相互作用至关重要。尽管可以从野外工作中收集大量信息,但是要调查未来的解决方案,高效的计算机模型可以捕获系统中发生的最重要的过程,这一点至关重要。对于相互作用力(风,潮汐,河流,盐度和温度引起的分层)相互作用且不稳定的河口系统,必须建立三维模型。在这项研究中,开发了三维水质模型(SI3DWQ)作为与现有水动力模型(SI3D)的耦合模型。添加到模型中的水质模块使用在流体力学模块中求解的速度,水深和水温信息来模拟对流和扩散传输的多种成分,包括:溶解氧,氮素,磷素,浮游植物作为叶绿素- a,悬浮的沉积物以及保守和非保守的示踪剂。在开发了水质模块之后,SI3DWQ被用于调查旧金山湾河口面临的水质问题。前两个模型将该模型应用于斯托克顿深水船航道(DWSC),该河是圣华金河的一段,自1960年代以来一直处于低溶解氧浓度。首先将模型校准到SF6示踪剂研究,以确定DWSC中的运输动力学。示踪剂模型研究揭示了转向盆地的重要性,尤其是在DWSC停留时间内河流流量低的情况下。在完成示踪剂研究后,将水质模型应用于DWSC的范围扩大到浮游植物,氮和磷物种以及溶解氧,以研究导致河段中溶解氧低的重要物理和生物地球化学过程。该模型应用程序确定了分层过程在溶解氧浓度中的重要性,并强调了转向盆在整个系统混合动力学中的重要性。这些模型应用程序可用于帮助指导圣华金河和DWSC的管理决策。该模型的最后一个应用程序使用SI3D模拟假设的永久性洪水泛滥的三角洲岛屿和周围的河道,以确定潜在的洪水影响。淹没了三角洲的洪灾岛屿的生物生产力,并建立了水动力和水质背景,以科学方式恢复栖息地。结果确定了管理未来永久性泛滥的三角洲岛屿时需要考虑的几点:(1)泛滥的三角洲岛屿既可以是叶绿素-a的汇,也可以产生支持次级生产的人口水平; (2)淹没岛的深度很重要,较浅的(3m和4m)沉陷的岛支持更多的浮游植物; (3)两次岛屿突破口出口的浮游植物浓度高于单支br。 (4)垂直于河道定向的岛屿支持更大的叶绿素浓度和通量。建模应用的结果表明,新开发的SI3DWQ可以成功地用于研究河口的各种水质问题。研究的结果可以由旧金山湾河口的管理人员和决策者使用,以帮助指导有关此复杂系统的未来的决策。该模型在旧金山河口的成功应用表明,该模型可以应用于全球其他河口,以帮助确定这些关键生态系统的解决方案。

著录项

  • 作者

    Doyle, Laura.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Engineering Civil.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号