首页> 外文学位 >Characterization of biofilm surfaces: Morphology, roughness, friction coefficient, spring constant, hydrophobicity and charge.
【24h】

Characterization of biofilm surfaces: Morphology, roughness, friction coefficient, spring constant, hydrophobicity and charge.

机译:生物膜表面的表征:形态,粗糙度,摩擦系数,弹性常数,疏水性和电荷。

获取原文
获取原文并翻译 | 示例

摘要

Five stages are involved in biofilm formation in an aqueous environment: initial reversible attachment (Stage 1), irreversible attachment (Stage 2), microcolony formation (Stage 3), biofilm maturation (Stage 4) and steady state growth (Stage 5). To determine the effect of nano-scale biofilm surface roughness on hydrodynamic conditions above the biofilm surface, the HBL thickness of two pure culture biofilms, Pseudomonas aeruginosa and Nitrosomonas europaea, (sampled at Stages 3 and 5) was evaluated using micro-particle image velocimetry (mu-PIV) for various free stream velocities within the laminar regime. The results indicate that the rougher biofilm surface (N. europaea biofilm) significantly increased the effect of HBL thickness. No effect was observed for changes in biofilm roughness on the coefficient of friction.;Atomic force microscopy (AFM) has been widely used to evaluate microbial surfaces properties due to its ability to quantify surface stiffness and interactive forces under in-situ conditions and to produce high resolution three-dimensional images. The physiological structure of the biofilm surface (morphology, roughness, spring constant, hydrophobicity and charge properties) was evaluated using AFM with CH3/COOH/NH2 functionalized tips at different biofilm growth stages. The results indicate that the pure culture Pseudomonas aeruginosa biofilm underwent morphology changes during biofilm growth. The surface roughness reached a maximum level in Stage 3, decreased in Stage 4 due to the accumulation of EPS, and stabilized in Stage 5. Surface stiffness increased during Stages 3 to 4 and then reached a plateau. Biofilm surface physicochemical properties (hydrophobicity and charge properties) were significantly altered in Stage 4 but were relatively stable in both Stages 3 and 5. These results indicate that the composition, structure, and chemical properties of a biofilm is highly dependent on the growth stage of the biological matrix.
机译:在水性环境中生物膜形成涉及五个阶段:初始可逆附着(阶段1),不可逆附着(阶段2),小菌落形成(阶段3),生物膜成熟(阶段4)和稳态生长(阶段5)。为了确定纳米级生物膜表面粗糙度对生物膜表面以上水动力条件的影响,使用微粒图像测速仪评估了两种纯培养生物膜铜绿假单胞菌和欧洲硝化单胞菌(在阶段3和5采样)的HBL厚度。 (μ-PIV)表示层流状态下的各种自由流速度。结果表明,较粗糙的生物膜表面(欧洲猪笼草生物膜)显着增加了HBL厚度的影响。没有观察到生物膜粗糙度的变化对摩擦系数的影响。原子力显微镜(AFM)由于能够量化原位条件下的表面刚度和相互作用力并产生微生物,因此已被广泛用于评估微生物表面特性。高分辨率三维图像。使用AFM与CH3 / COOH / NH2功能化的尖端在不同的生物膜生长阶段评估生物膜表面的生理结构(形态,粗糙度,弹性常数,疏水性和电荷性质)。结果表明,纯培养的铜绿假单胞菌生物膜在生物膜生长过程中发生了形态变化。表面粗糙度在第3阶段达到最大水平,在第4阶段由于EPS的积累而降低,并在第5阶段稳定下来。表面刚度在第3到第4阶段增加,然后达到平稳状态。生物膜的表面理化性质(疏水性和电荷性质)在第4阶段发生了显着变化,但在第3阶段和第5阶段都相对稳定。这些结果表明,生物膜的组成,结构和化学性质高度依赖于生物膜的生长阶段。生物基质。

著录项

  • 作者

    Huang, Zhen.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Environmental.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号