首页> 外文学位 >Adversarial and Stochastic Search for Mobile Targets in Complex Environments.
【24h】

Adversarial and Stochastic Search for Mobile Targets in Complex Environments.

机译:在复杂环境中对移动目标进行对抗性和随机性搜索。

获取原文
获取原文并翻译 | 示例

摘要

A new era of robotics has begun. In this era, robots are coming out of simple, structured environments (such as factory floors) into the real world. They are no longer performing simple, repetitive tasks. Instead, they will soon be operating autonomously in complex environments filled with uncertainties and dynamic interactions. Many applications have already emerged as a result of these potential advances. A few examples are precision agriculture, space exploration, and search-and-rescue operations.;Most of the robotics applications involve a ''search'' component. In a search mission, the searcher is looking for a mobile target while the target is avoiding capture intentionally or obliviously. Some examples are environmental monitoring for population control and behavioral study of animal species, and searching for victims of a catastrophic event such as an earthquake.;In order to design search strategies with provable performance guarantees, researchers have been focusing on two common motion models. The first one is the adversarial target model in which the target uses best possible strategy to avoid capture. The problem is then mathematically formulated as a pursuit-evasion game where the searcher is called the ''pursuer'' and the target is referred to as the ''evader''. In pursuit-evasion games, when a pursuit strategy exists, it guarantees capture against any possible target strategy and, for this reason, can be seen as the worst-case scenario. Considering the worst-case behavior can be too conservative in many practical situations where the target may not be an adversary. The second approach deals with non-adversarial targets by modeling the target's motion as a stochastic process. In this case, the problem is referred to as one-sided probabilistic search for a mobile target, where the target cannot observe the searcher and does not actively evade detection. In this dissertation, we study both adversarial and probabilistic search problems. In this regard, the dissertation is divided into two main parts.;In the first part, we focus on pursuit-evasion games, i.e., when the target is adversarial. We provide capture strategies that guarantee capture in finite time against any possible escape strategy. Our contributions are mainly in two areas whether the players have full knowledge of each other's location or not. First, we show that when the pursuer has line-of-sight vision, i.e., when the pursuer sees the evader only when there are no obstacles in the between them, it can guarantee capture in monotone polygons. Here, the pursuer must first ensure that it ''finds'' the evader when it is invisible by establishing line-of-sight visibility, and then it must guarantee capture by getting close to the evader within its capture distance. In our second set of results, we focus on pursuit-evasion games on the surface of polyhedrons assuming that the pursuers are aware of the location of the evader at all times and their goal is to get within the capture distance of the evader.;In the second part, we study search strategies for finding a random walking target. We investigate the search problem on linear graphs and also 2-D grids. Our goal here is to design strategies that maximize the detection probability subject to constraints on the time and energy, which is available to the searcher. We then provide field experiments to demonstrate the applicability of our proposed strategies in an environmental monitoring project where the goal is to find invasive common carp in Minnesota lakes using autonomous surface/ground vehicles.
机译:机器人技术的新时代已经开始。在这个时代,机器人正从简单的结构化环境(例如工厂车间)进入现实世界。他们不再执行简单的重复性任务。相反,它们很快将在充满不确定性和动态交互的复杂环境中自主运行。这些潜在的进步已经产生了许多应用。一些例子是精密农业,太空探索以及搜索和救援行动。大多数机器人应用程序都涉及“搜索”组件。在搜索任务中,搜索者正在寻找移动目标,而目标却避免有意或无意地捕获目标。例如,为种群控制进行环境监测和对动物物种的行为研究,以及寻找灾难性事件(例如地震)的受害者。为了设计具有可证明性能保证的搜索策略,研究人员一直专注于两种常见的运动模型。第一个是对抗目标模型,其中目标使用最佳策略来避免被捕获。然后将问题从数学上说成是追逃游戏,其中搜索者称为“追逐者”,目标称为“逃避者”。在逃避游戏中,当存在追逐策略时,它可以确保针对任何可能的目标策略进行捕获,因此,可以将其视为最坏的情况。在许多目标可能不是对手的实际情况下,考虑最坏情况的行为可能过于保守。第二种方法通过将目标的运动建模为随机过程来处理非对抗目标。在这种情况下,该问题被称为针对移动目标的单边概率搜索,其中目标无法观察到搜索者,也无法主动规避检测。本文研究了对抗性和概率性搜索问题。在这方面,论文分为两个主要部分。在第一部分中,我们关注于追逃游戏,即目标是对抗性的游戏。我们提供捕获策略,以确保在有限的时间内捕获任何可能的逃生策略。我们的贡献主要体现在两个方面,即玩家是否对彼此的位置完全了解。首先,我们证明了当追随者具有视线视野时,即当追寻者只有在它们之间没有障碍物时才看到逃避者时,才能保证捕获到单调多边形中。在这里,追踪者必须首先通过建立视线可见性来确保在躲藏者不可见时“找到”逃避者,然后必须通过在其捕获距离内接近躲避者来确保捕获。在第二组结果中,我们假设追踪者始终知道逃避者的位置,并且他们的目标是在逃避者的捕获距离之内,因此,我们着重研究多面体表面上的逃避游戏。第二部分,我们研究寻找随机行走目标的搜索策略。我们调查线性图和二维网格上的搜索问题。我们的目标是设计一种策略,该策略在受到时间和精力限制的情况下最大化检测概率,这对于搜索者是可用的。然后,我们提供野外实验,以证明我们提出的策略在环境监测项目中的适用性,该项目的目的是使用自动地面/地面车辆在明尼苏达州的湖泊中发现入侵鲤鱼。

著录项

  • 作者

    Noori, Narges.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Robotics.;Computer science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号