首页> 外文学位 >Enhancement of Supercapacitor Energy Storage by Leakage Reduction and Electrode Modification.
【24h】

Enhancement of Supercapacitor Energy Storage by Leakage Reduction and Electrode Modification.

机译:通过减少泄漏和电极修饰增强超级电容器储能。

获取原文
获取原文并翻译 | 示例

摘要

Supercapacitors have emerged in recent years as a promising energy storage technology. The main mechanism of energy storage is based on electrostatic separation of charges in a region at the electrode-electrolyte interface called double layer. Various electrode materials including carbon and conducting polymers have been used in supercapacitors. Also, supercapacitors offer high life cycle and high power density among electrochemical energy storage devices. Despite their interesting features, supercapacitors present some disadvantages that limit their competitivity with other storage devices in some applications. One of those drawbacks is high self-discharge or leakage. The leakage occurs when electrons cross the double layer to be involved in electrochemical reactions in the supercapacitor's electrolyte. In this work, the first research project demonstrates that the addition of a very thin blocking layer to a supercapacitor electrode, can improve the energy storage capability of the device by reducing the leakage. However, the downside of adding a blocking layer is the reduction of the capacitance. A second project developed a mathematical model to study how the thickness of the blocking layer affects the capacitance and the energy density. The model combines electrochemical and quantum mechanical effects on the electrons transfer responsible of the leakage. Based on the model, a computational code is developed to simulate and study the self-discharge and the energy loss in hypothetical devices with different thicknesses of the blocking layer. The third research project identified the optimal amount of a surfactant (Triton-X 100) that had a significant effect on the double layer capacitance and conductivity of a spin-coated PEDOT:PSS (poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)) electrode. The effect of the concentration of the surfactant was investigated by measuring the electrochemical properties and the conductivity of different electrodes. The electrodes were fabricated with different concentrations of the surfactant. Scanning electron microscopy characterizations confirmed the structural change in the PEDOT:PSS that contributed to the capacitance and conductivity enhancement. A final research project proposed an approach on how to utilize the modified PEDOT:PSS added to different photoactive dyes to design a photoactive supercapacitor. The new approach showed the possibility of using a supercapacitor device as an energy harvesting as well as a storage device.
机译:近年来,超级电容器已成为一种有前途的储能技术。能量存储的主要机制是基于静电在电极-电解质界面处被称为双层的区域中的电荷分离。在超级电容器中已经使用了包括碳和导电聚合物在内的各种电极材料。而且,超级电容器在电化学储能装置中提供了高生命周期和高功率密度。尽管超级电容器具有有趣的功能,但在某些应用中仍存在一些缺点,从而限制了它们与其他存储设备的竞争能力。这些缺点之一是高的自放电或泄漏。当电子穿过双层进入超级电容器电解质中的电化学反应时,就会发生泄漏。在这项工作中,第一个研究项目表明,在超级电容器电极上添加非常薄的阻挡层可以通过减少泄漏来提高设备的能量存储能力。但是,增加阻挡层的缺点是减小电容。第二个项目开发了一个数学模型来研究阻挡层的厚度如何影响电容和能量密度。该模型结合了电化学和量子力学效应,从而对导致泄漏的电子转移产生了影响。基于该模型,开发了计算代码来模拟和研究具有不同厚度的阻挡层的假想装置中的自放电和能量损失。第三个研究项目确定了最佳用量的表面活性剂(Triton-X 100),该表面活性剂对旋涂PEDOT:PSS(聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐) ))电极。通过测量不同电极的电化学性能和电导率来研究表面活性剂浓度的影响。用不同浓度的表面活性剂制备电极。扫描电子显微镜表征证实了PEDOT:PSS的结构变化,这有助于电容和电导率的提高。最终研究项目提出了一种方法,该方法如何利用添加到不同光敏染料中的改性PEDOT:PSS设计光敏超级电容器。新方法显示了将超级电容器设备用作能量收集和存储设备的可能性。

著录项

  • 作者

    Tevi, Tete.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Electrical engineering.;Organic chemistry.;Chemistry.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号