首页> 外文学位 >Temperature dependence of transport properties in liquid metals.
【24h】

Temperature dependence of transport properties in liquid metals.

机译:液态金属中传输特性的温度依赖性。

获取原文
获取原文并翻译 | 示例

摘要

Using the Ziman formula, which results from solving the linearized Boltzmann equation, the electrical and thermal resistivities of selected metals in the liquid state are calculated over a range of temperatures, at and above the melting point. In previous studies of liquid metals, the electrical resistivity was calculated for only a very few cases and only at the melting point. In most cases the calculated structure factor S(q), if used, was obtained from simple models like the hard sphere or empty-core pair potential model. By doing the calculations over a range of temperatures, beyond the melting point and using a better S(q), we gain considerable insight into the transport properties of liquid metals. By calculating the thermal resistivity over the same range of temperatures we explain the deviation of the ratio of electrical and thermal resistivities from the Wiedemann-Franz law, which holds well for lower temperatures.; The form factor is calculated for each liquid metal based on the model potential suggested by Taylor et al., including screening effects, by using the screening function of Geldart and Taylor. The liquid structure factors are calculated, in some cases, from the radial distribution function obtained from Monte Carlo simulations based on the same model potential mentioned above and used in the form factor construction. Both the calculated structure factors and the experimental structure factors obtained from x-ray scattering are used in the Ziman formula to obtain the thermal and electrical resistivities. The results are compared to experimental values and to other theoretical calculations done at the melting point for each of the selected metals using different model potentials and form factors or other theoretical methods.
机译:使用Ziman公式,该公式是通过求解线性化的Boltzmann方程得出的,在一定温度范围内,高于熔点的温度范围内,计算出液态选定金属的电阻率和热阻率。在以前的液态金属研究中,仅在极少数情况下且仅在熔点下计算电阻率。在大多数情况下,计算得出的结构因子S(q)(如果使用)是从简单模型(如硬球或空核对势模型)获得的。通过在超过熔点的温度范围内进行计算,并使用更好的S(q),我们对液态金属的传输特性有了相当深入的了解。通过计算在相同温度范围内的热阻率,我们解释了电阻率和热阻率之比与Wiedemann-Franz定律的偏差,该定律适用于较低温度。通过使用Geldart和Taylor的筛选功能,根据Taylor等人建议的模型电位(包括筛选效果),为每种液态金属计算形状因子。在某些情况下,根据上述相同的模型电势,根据蒙特卡罗模拟获得的径向分布函数,计算出液体结构因子,并将其用于形状因子构造中。从X射线散射获得的计算结构因子和实验结构因子都用在Ziman公式中,以获得热电阻率和电阻率。使用不同的模型电势和形状因子或其他理论方法,将结果与实验值以及在每种选定金属的熔点进行的其他理论计算进行比较。

著录项

  • 作者

    Sayem El-Daher, Moustafa.;

  • 作者单位

    University of Missouri - Kansas City.;

  • 授予单位 University of Missouri - Kansas City.;
  • 学科 Physics Condensed Matter.; Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号