首页> 外文学位 >Exploring the role of the unfolded state in protein folding.
【24h】

Exploring the role of the unfolded state in protein folding.

机译:探索未折叠状态在蛋白质折叠中的作用。

获取原文
获取原文并翻译 | 示例

摘要

We analyzed the energetic and structural role of the unfolded state in the folding of gsmFKBP protein. Three mutants of gsmFKBP were generated based on information about existing residual structure of the protein in the urea-unfolded state. Mutations replaced the residue Q53 with better N-capping residue: N, T and D, in order to enhance the helix formation in the unfolded state. We proposed that mutations would change the residual structure and energy of the urea-unfolded state, which would effect kinetic and thermodynamic properties of the mutated proteins.;We found that mutations have small effect on overall protein stability. The gsmFKBP and its Q53N, Q53T and Q53D mutants follow two-state equilibrium isothermal urea-induced denaturation transition.;The kinetic data on rates of folding and unfolding suggest that two energy states are changed in mutated proteins, unfolded and transition. We found that gsmFKBP and Q53N protein fold via kinetic intermediate, whereas Q53T and Q53D proteins do not have any folding intermediate states. Mutations to T or D abolished the intermediate formation and altered protein folding pathway. Mutations in position Q53 of gsmFKBP resulted in large, nonclassical phi-values, which indicate that this residue serves as a "gatekeeper" defining the protein folding pathway.;We showed by NMR that the native structures of gsmFKBP and its mutants are very similar. However, measurable differences in nonrandom secondary structure of gsmFKBP and its mutants were identified in the urea-unfolded state. Observed differences in NOES patterns suggest that each mutant has enhanced helix formation in urea-unfolded state compared to gsmFKBP.;Our results provide first experimental evidence that nonrandom secondary structure in the unfolded state can change a protein folding pathway.
机译:我们分析了gsmFKBP蛋白折叠中未折叠状态的能量和结构作用。 gsmFKBP的三个突变体是基于有关尿素未折叠状态下蛋白质的现有残留结构的信息而生成的。突变用更好的N-封端残基:N,T和D替换了残基Q53,以增强未折叠状态下的螺旋形成。我们认为,突变会改变尿素未折叠状态的残留结构和能量,从而影响突变蛋白的动力学和热力学性质。我们发现,突变对总体蛋白稳定性的影响很小。 gsmFKBP及其Q53N,Q53T和Q53D突变体遵循两态平衡等温尿素诱导的变性转变。折叠和展开速率的动力学数据表明,突变蛋白质的两个能态发生了变化,即展开和转变。我们发现gsmFKBP和Q53N蛋白通过动力学中间体折叠,而Q53T和Q53D蛋白没有任何折叠中间体状态。 T或D突变消除了中间形成并改变了蛋白质折叠途径。 gsmFKBP的Q53位置突变导致产生较大的非经典phi值,表明该残基充当定义蛋白质折叠途径的“守门人”。;我们通过NMR表明,gsmFKBP的天然结构及其突变体非常相似。但是,gsmFKBP及其突变体的非随机二级结构中的可测量差异被确定为尿素未折叠状态。观察到的NOES模式差异表明,与gsmFKBP相比,每个突变体在尿素未折叠状态下都有增强的螺旋形成。;我们的结果提供了第一个实验证据,即未折叠状态下的非随机二级结构可以改变蛋白质折叠途径。

著录项

  • 作者

    Korepanova, Alla V.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Biophysics.;Molecular biology.;Biochemistry.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号