首页> 外文学位 >Development of a hollow fiber membrane bioreactor for cometabolic degradation of chlorinated solvents.
【24h】

Development of a hollow fiber membrane bioreactor for cometabolic degradation of chlorinated solvents.

机译:开发一种中空纤维膜生物反应器,用于氯化物的可代谢降解。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this research was to develop the hollow fiber membrane (HFM) bioreactor system for treatment of chlorinated solvents in waste mixtures. This new technology employs a hollow fiber membrane reactor to separate chlorinated solvents from water or air with subsequent cometabolic biodegradation using a mutant methanotrophic microorganism, Methylosinus trichosporium OB3b PP358. Research objectives included demonstrating successful performance of the HFM bioreactor system for the treatment of trichloroethylene (TCE) contaminated water and air, increasing process efficiency for cost competitiveness with conventional technologies, extending HFM bioreactor studies to chlorinated solvent mixtures, and developing a system design strategy.; HFM bioreactor demonstration experiments evaluated various process configurations, flow rates, and influent TCE concentrations. In TCE contaminated water experiments, mass transfer coefficients as large as 2.7 × 10−2 cm/min were estimated and the system was able to sustain an average first-order degradation rate constant of 0.57 L mg TSS−1 d −1 for 500 hours. While configuring the system with chlorinated solvents flowing through the HFM lumen and microorganisms flowing through the HFM shell was preferred for aqueous experiments, air treatment experiments required switching the flows because water vapor mass transfer resulted in water clogged fiber lumen.; Following the demonstration experiments, shorter HFM hydraulic residence times between 0.16 and 0.57 minutes were investigated. A tradeoff between providing sufficient oxygenation and methanol stripping in the chemostat was observed. A new process decision variable, specific transformation was defined and values as large as 38.5 μg TCE/mg TSS were sustainable for TCE treatment. In HFM bioreactor experiments with a mixture of TCE and chloroform (CF), large TCE first-order degradation rate constants between 0.75 L mg TSS−1 d−1 and 1.08 L mg TSS−1 d−1 indicated that the addition of CF did not affect TCE degradation. CF mass transfer coefficients were approximately 10% less than TCE coefficients and the average CF degradation rate constant was 0.32 that of TCE. Computer models of mass transfer and biodegradation in the system were constructed and validated with experimental data. A modeling analysis was then conducted on the important decision variables and parameters and the results were used to develop a system design strategy.
机译:这项研究的目的是开发一种中空纤维膜(HFM)生物反应器系统,用于处理废物混合物中的氯化溶剂。这项新技术采用中空纤维膜反应器从水中或空气中分离出氯化溶剂,随后使用突变的甲烷营养型微生物 Methylosinus trichosporium OB3b PP358进行可代谢生物降解。研究目标包括展示HFM生物反应器系统在处理三氯乙烯(TCE)污染的水和空气方面的成功性能,通过传统技术提高工艺效率以提高成本竞争力,将HFM生物反应器研究扩展到氯化溶剂混合物,以及制定系统设计策略。 ; HFM生物反应器演示实验评估了各种工艺配置,流速和进水三氯乙烯浓度。在TCE污染的水实验中,传质系数估计为2.7×10 -2 cm / min,该系统能够维持0.57 L mg TSS < super> -1 d -1 持续500小时。在配置系统时,应优先使用流过HFM内腔的氯化溶剂和流经HFM外壳的微生物进行水质实验,而空气处理实验则需要切换流量,因为水蒸气的质量转移会导致纤维内腔堵塞。在演示实验之后,研究了在0.16至0.57分钟之间较短的HFM水力停留时间。观察到在恒化器中提供足够的氧合作用和甲醇汽提之间的权衡。定义了一个新的工艺决策变量,即特定的转化,TCE治疗的可持续值高达38.5μgTCE / mg TSS。在使用三氯乙烯和氯仿(CF)混合物进行的HFM生物反应器实验中,较大的三氯乙烯一阶降解速率常数介于0.75 L TSS -1 d -1 -1 和1.08 L毫克TSS -1 d -1 表明添加CF不会影响TCE的降解。 CF传质系数比TCE系数小约10%,平均CF降解速率常数为TCE的0.32。建立了系统中传质和生物降解的计算机模型,并用实验数据进行了验证。然后对重要的决策变量和参数进行建模分析,并将结果用于制定系统设计策略。

著录项

  • 作者

    Pressman, Jonathan G.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 269 p.
  • 总页数 269
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号