首页> 外文学位 >Design, fabrication, and test of chaotic micromixers, hydrogel microvalves andpH regulation systems.
【24h】

Design, fabrication, and test of chaotic micromixers, hydrogel microvalves andpH regulation systems.

机译:混沌微混合器,水凝胶微阀和pH调节系统的设计,制造和测试。

获取原文
获取原文并翻译 | 示例

摘要

This thesis describes development of microfluidic devices for chip scale fluid handling, specifically, passive chaotic micromixers, hydrogel microvalves, and pH regulation microsystems. All these devices have relatively simple design, high performance, low power consumption, and ease of fabrication and integration into a system.; Diffusion-limited mixing at low Reynolds number (Re) is often inefficient for many biological processes. Chaotic advection, which results in rapid distortion and elongation of stream interfaces and increases the interfacial area across which diffusion occurs, can lead to rapid mixing at low Re. Based on the principle of chaotic advection, two passive in-line micromixers consisting of a 3D channel geometry were designed, fabricated, and tested. Flow experiments have confirmed the effectiveness of these designs to produce chaos and enhance mixing for small Re (1 ∼ 100).; To simplify system construction and assembly, an in-situ photopolymerization technique that is used to create functional polymer microvalves within microchannels for local flow control was developed. Several hydrogel microvalves, including three 2D valves and one 3D hybrid valve, were fabricated using in-situ photopolymerization. The valves consist of a single smart material that undergoes a volume change in response to changes in local pH. Experiments showed that the hydrogel microvalves have a number of advantages over conventional microvalves, including high performance, relatively simple fabrication and assembly, no power requirement, and no integrated electronics.; In the last part of the thesis, two integrated microsystems designed to provide self regulation of pH in bioassays are demonstrated. The first system is based on the counterflow microdialysis principle, whereas the second system involves direct addition of an acidic or basic buffer solution into a sample solution. In both systems, a hydrogel component is used as a pH sensor, controller, and valve, simultaneously. Oscillatory modulation of the flow was achieved, and the feasibility of autonomous control of pH in microsystems has been demonstrated.
机译:本文介绍了用于芯片级流体处理的微流控设备的开发,特别是无源混沌微混合器,水凝胶微阀和pH调节微系统。所有这些设备都具有相对简单的设计,高性能,低功耗,并且易于制造和集成到系统中。对于许多生物过程,低雷诺数(Re)的扩散受限混合通常效率不高。混沌对流会导致流界面快速变形和伸长,并增加发生扩散的界面面积,会导致在低Re下快速混合。基于混沌对流原理,设计,制造和测试了两个由3D通道几何形状组成的无源在线微型混合器。流动实验已经证实了这些设计对于产生较小的Re(1〜100)会产生混乱并增强混合的有效性。为了简化系统的构造和组装,开发了一种用于在局部流动控制中在微通道内创建功能性聚合物微阀的原位光聚合技术。使用原位光聚合反应制备了数个水凝胶微阀,包括三个2D阀和一个3D混合阀。阀门由单一智能材料组成,该智能材料会响应于局部pH的变化而发生体积变化。实验表明,水凝胶微阀与常规微阀相比具有许多优势,包括高性能,相对简单的制造和组装,无功率需求,无集成电子器件。在论文的最后一部分,展示了两个集成的微系统,这些系统旨在提供生物测定中pH的自我调节。第一个系统基于逆流微透析原理,而第二个系统涉及将酸性或碱性缓冲溶液直接添加到样品溶液中。在这两种系统中,水凝胶组分都同时用作pH传感器,控制器和阀门。实现了流量的振荡调制,并证明了在微系统中自主控制pH的可行性。

著录项

  • 作者

    Liu, Hui.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号