首页> 外文学位 >Higher hydrocarbons to chemicals in millisecond reactors.
【24h】

Higher hydrocarbons to chemicals in millisecond reactors.

机译:在毫秒级反应器中将高级碳氢化合物转化为化学物质。

获取原文
获取原文并翻译 | 示例

摘要

Millisecond chemical reactors could replace many conventional industrial processes to convert hydrocarbons into value-added chemicals. In this thesis, the potential of millisecond reactors for the partial oxidation of C6–C8 hydrocarbon feeds is investigated. Most commercial methods are liquid-phase processes plagued by poor conversions, high recycle costs, long residence times (minutes to hours), and expensive catalysts. High-temperature vapor-phase oxidation followed by fast cooling is a radically different technology. The catalyst contact time is up to six orders of magnitude lower, allowing higher throughputs and thus lower capital costs.; The feeds studied include cyclohexane, n-hexane, methylcyclohexane, n-heptane, toluene, p-xylene, isooctane, and gasoline. Depending on the catalyst and operating conditions, product distributions can be tuned to favor oxygenates, olefins, or synthesis gas (syngas, H 2 and CO). With a cyclohexane-oxygen feed at C6H12/O 2 = 2, a Pt–10%Rh single-gauze catalyst can give total selectivities exceeding 80% to oxygenates and olefins (mostly 5-hexenal and cyclohexene) at 25% cyclohexane conversion and complete oxygen conversion. Many catalysts are explored for cyclohexane oxidation, including Pt, Rh, Pt–Rh, Pt–Sn, Co, Mo, and Ag.; The oxidation of liquid fuels to produce syngas is motivated by current interest in improved engine efficiency and fuel cells. A wide variety of fuels are reacted with air over Rh-coated monoliths at short contact times. Very high yields (typically >90%) of syngas are produced from n-hexane, cyclohexane, isooctane, and toluene, representing model linear, cyclic, branched, and aromatic hydrocarbon fuels, respectively.; Density-functional theory is used to predict rate-constant parameters for the partial oxidation of cyclohexane. The model includes 46 elementary reactions and 31 species. According to two-dimensional computational fluid-dynamics simulations, the primary role of the catalyst is to oxidize some cyclohexane on the surface, generating heat to initiate gas-phase reactions. A narrow reaction zone near the catalyst produces species which do not decompose due to fast mixing and cooling in the wake of the wires. Thermal gradients are on the order of 106 K/s near the catalyst. Numerical reactor simulations suggest ways to adjust operation for desired product distributions, by allowing the investigation of costly or potentially dangerous experiments, such as high pressure.
机译:毫秒化学反应器可以替代许多常规工业过程,将碳氢化合物转化为增值化学品。本文研究了毫秒反应器对C 6 –C 8 烃类进料部分氧化的潜力。大多数商业方法是液相方法,其转化率低,再循环成本高,停留时间长(数分钟至数小时)和昂贵的催化剂困扰。高温气相氧化然后快速冷却是一项根本不同的技术。催化剂接触时间减少了多达六个数量级,从而提高了产量,从而降低了投资成本。研究的进料包括环己烷,-己烷,甲基环己烷, n -庚烷,甲苯,-二甲苯,异辛烷和汽油。根据催化剂和操作条件的不同,可以调整产品分布以利于含氧化合物,烯烃或合成气(合成气,H 2 和CO)。以C 6 H 12 / O 2 = 2的环己烷氧气进料,Pt–10%Rh单纱催化剂可以产生在25%的环己烷转化率和完全的氧气转化率下,含氧化合物和烯烃(大多数为5-己烯和环己烯)的总选择性超过80%。探索了许多用于环己烷氧化的催化剂,包括Pt,Rh,Pt–Rh,Pt–Sn,Co,Mo和Ag。当前对提高发动机效率和燃料电池的兴趣促使液体燃料氧化以产生合成气。各种燃料在较短的接触时间下与空气在Rh涂层的整体材料上反应。从正斜体-己烷,环己烷,异辛烷和甲苯中分别生产线性,环状,支链和芳烃模型​​燃料,可产生很高的产率(通常> 90%)。密度泛函理论用于预测环己烷部分氧化的速率常数参数。该模型包括46个基本反应和31个物种。根据二维计算流体动力学模拟,催化剂的主要作用是氧化表面上的某些环己烷,产生热量以引发气相反应。靠近催化剂的狭窄反应区产生的物质不会由于金属丝后的快速混合和冷却而分解。催化剂附近的热梯度约为10 6 K / s。数值反应器模拟提出了通过允许研究昂贵或潜在危险的实验(例如高压)来调整所需产品分布的操作的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号