首页> 外文学位 >Examination of human mesenchymal stem cell behavior in the presence of individual whole extracellular matrix protein in three-dimensional environments.
【24h】

Examination of human mesenchymal stem cell behavior in the presence of individual whole extracellular matrix protein in three-dimensional environments.

机译:在三维环境中在单个完整细胞外基质蛋白存在下检查人间充质干细胞的行为。

获取原文
获取原文并翻译 | 示例

摘要

Stem cell behavior is guided by the chemical, mechanical, topographical and biochemical properties that are provided by the extracellular microenvironment. While a number of experiments have showcased the strong influence biochemical signals from extracellular matrix (ECM) proteins can have on stem cell behavior, it has been difficult to elucidate the true impact of individual ECM proteins in three-dimensional environments. In this work we utilized multiphoton excited photochemistry to generate 3D, whole ECM protein structures containing collagen I, fibronectin, and laminin.;Human mesenchymal stem cells were cultured on these 3D structures and RNA sequencing was performed to broadly examine how gene expression, an indication of cell behavior, was altered by the presence of individual whole ECM proteins. We noted that stem cells cultured in 3D environments with individual ECM proteins were capable of remodeling the external environment both physically and biochemically. Additionally, these modifications depended on the duration of culture, whether the cells were exposed to 2D or 3D environments, and the presence of specific ECM proteins. A broad examination of the RNA sequencing data revealed differences in gene expression profiles of stem cells between 2D standard culture and 3D structure, and among different 3D structure types. Further examination of the data revealed that long-term culture of embryonic stem-derived mesenchymal stem cells in media lacking chemical induction components in 2D standard tissue culture and 3D environments primarily impacted osteogenic differentiation.;Additionally, we examined the expression levels of genes associated with endothelial and smooth muscle cells, two cells vital to vasculature development, in structures containing fibronectin. We observed the presence of genes for endothelial and smooth muscle cells, indicating that fibronectin may influence vasculature development through the differentiation of these two cell types.;Additionally, we noted a decrease in sphingosine 1 phosphate lyase 1 in fibronectin structures, which may effect the degradation of sphingosine-1-phosphate, an important factor in vasculature development. In conclusion, we utilized multiphoton excited photochemistry-based 3D printing and RNA sequencing to examine how the presence of individual ECM proteins in 3D direct stem cell behavior. And the combination of these two technologies enabled the exploration of ECM-stem cell dynamics and may facilitate approaches to control stem cell response for clinical applications.
机译:干细胞行为受细胞外微环境提供的化学,机械,地形和生化特性的指导。尽管许多实验表明细胞外基质(ECM)蛋白产生的生化信号可能对干细胞行为产生强大影响,但很难阐明单个ECM蛋白在三维环境中的真实影响。在这项工作中,我们利用多光子激发光化学来生成3D完整的ECM蛋白结构,包含胶原蛋白I,纤连蛋白和层粘连蛋白。在这些3D结构上培养了人间充质干细胞,并进行了RNA测序以广泛检查基因表达的方式,这是一种指示细胞行为的改变,是由于单个完整ECM蛋白的存在而改变的。我们注意到,在3D环境中用单个ECM蛋白培养的干细胞能够在物理和生化方面重塑外部环境。另外,这些修饰取决于培养的持续时间,细胞是否暴露于2D或3D环境以及特定ECM蛋白的存在。对RNA测序数据的广泛检查揭示了2D标准培养物和3D结构之间以及不同3D结构类型之间干细胞基因表达谱的差异。进一步检查数据表明,在2D标准组织培养和3D环境中缺乏化学诱导成分的培养基中长期培养源自胚胎干的间充质干细胞主要影响成骨分化。内皮和平滑肌细胞,这是对血管系统发育至关重要的两个细胞,位于含有纤连蛋白的结构中。我们观察到了内皮细胞和平滑肌细胞的基因存在,表明纤连蛋白可能通过这两种细胞类型的分化影响脉管系统的发育;此外,我们注意到纤连蛋白结构中鞘氨醇1磷酸裂解酶1的减少,这可能会影响1-磷酸鞘氨醇的降解,是脉管系统发育的重要因素。总之,我们利用了基于多光子激发光化学的3D打印和RNA测序技术来检查3D中单个ECM蛋白的存在如何直接指导干细胞行为。这两种技术的结合使ECM干细胞动力学的探索成为可能,并可能促进临床上控制干细胞反应的方法。

著录项

  • 作者

    Tran, Quyen.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Biomedical engineering.;Cellular biology.;Molecular biology.;Biochemistry.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号