首页> 外文学位 >Crystallization of isolated amorphous zones in semiconductors.
【24h】

Crystallization of isolated amorphous zones in semiconductors.

机译:半导体中孤立的非晶区的结晶。

获取原文
获取原文并翻译 | 示例

摘要

The amorphous-to-crystalline transition of isolated amorphous zones in semiconductors was investigated in Si, Ge, GaAs, GaP and InP. Crystallization was induced by low energy electrons, photons and thermal annealing with experiments performed in-situ using transmission electron microscopes at Argonne National Laboratory and at the Center for Microanalysis of Materials in the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign. Spatially isolated amorphous damage was created by low dose (≈1011 cm−2) ion implantations (typically 50 keV Xe+ at 300 K) using the IVEM-Tandem Accelerator Facility at ANL. Electron-induced crystallization irradiations were performed at energies from 25 to 300 keV at temperatures between 90 and 300 K in a Philips CM30 TEM at ANL. The effects of varying ion energy and crystal orientation was studied, but the electron energy had the strongest effect on crystallization rates. The dependence of crystallization rate on electron energy was similar in all the semiconductors studied. As the electron energy was lowered from 300 K the rate initially decreased and reached a minimum below the threshold displacement energy. As the electron energy was lowered further the crystallization rate increased, reaching a maximum at 25 keV, the lowest voltage attempted. Low temperature electron irradiations, thermal annealing experiments and theoretical calculations of temperature rise demonstrate that crystallization is not caused by electron beam heating. Sub-threshold electron-induced crystallization shows that displacive mechanisms and point defects are not required to stimulate regrowth of isolated amorphous zones. The rate dependence on electron irradiation stimulated amorphous zone regrowth in each material, again suggesting that a non-displacive mechanism is operating. The photon-induced crystallization rates scaled with the number of electron-hole pair defects generated.; Software was developed to detect, measure and track individual amorphous zones throughout a series of irradiation micrographs. Characteristic zone shrinkage behaviors were observed. A simple shrinkage model suggests that the defects responsible for regrowth are created very near the crystalline/amorphous interface. In the sub-threshold electron energy regime, crystallization is thought to be initiated by an electronic excitation which creates a dangling bond pair. By migrating along the crystalline/amorphous interface these dangling bonds are capable of reconstructing to the crystal a large number of atoms through a mechanism similar to that for thermally activated solid phase epitaxial growth.
机译:在Si,Ge,GaAs,GaP和InP中研究了半导体中孤立的非晶区的非晶态向晶体转变。低能电子,光子和热退火诱导了结晶,并通过透射电子显微镜在阿尔贡国家实验室和位于弗雷德里克·塞茨材料研究实验室的材料微观分析中心进行了就地实验。伊利诺伊大学香槟分校。通过在300 K下进行低剂量(≈ 10 11 cm -2 )离子注入(通常为50 keV Xe + )产生空间隔离的无定形破坏)使用ANL的IVEM串联加速器设施。在ANL的Philips CM30 TEM中,在90至300 K之间的温度下,以25至300 keV的能量在25到300 keV的能量下进行了电子诱导的结晶辐射。研究了改变离子能量和晶体取向的影响,但是电子能量对结晶速率的影响最大。在所有研究的半导体中,结晶速率对电子能量的依赖性相似。随着电子能量从300 K降低,速率最初降低并达到低于阈值位移能的最小值。随着电子能量的进一步降低,结晶速率增加,在25 keV时达到最大值,尝试了最低电压。低温电子辐射,热退火实验和温升的理论计算表明,结晶不是由电子束加热引起的。亚阈值以下的电子诱导结晶表明,不需要位移机制和点缺陷来刺激孤立的非晶区的再生长。速率依赖于电子辐照在每种材料中刺激的非晶区再生长,再次表明非位移机制正在起作用。光子诱导的结晶速率与产生的电子-空穴对缺陷的数量成比例。开发了用于检测,测量和跟踪一系列辐照显微照片中各个非晶区的软件。观察到特征区域收缩行为。一个简单的收缩模型表明,导致再生长的缺陷非常靠近晶体/非晶界面。在亚阈值电子能量范围内,结晶被认为是由电子激发引起的,该电子激发产生了悬空的键对。通过沿着晶体/非晶界面迁移,这些悬空键能够通过类似于热激活固相外延生长的机理将大量原子重构到晶体上。

著录项

  • 作者

    Hollar, Eric Prater.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号