首页> 外文学位 >Modeling ionic transport in solid polymer electrolytes and supercapacitors.
【24h】

Modeling ionic transport in solid polymer electrolytes and supercapacitors.

机译:模拟固体聚合物电解质和超级电容器中的离子迁移。

获取原文
获取原文并翻译 | 示例

摘要

Solid polymer electrolytes (SPEs) can be used to construct all-solid-state rechargeable lithium batteries which deliver high energy density and have design and safety advantages over traditional batteries employing aqueous electrolytes. In this work, we investigate ion association phenomena in solid polymer electrolytes. Ion and ion pair transport under direct and alternating current (DC and AC) excitation in solid polymer electrolytes are considered. We provide a thorough theoretical analysis of the effects of ion association on the conductivity, general current-potential behavior, limiting current density, and cell impedance. We find that ion association causes the effective molar conductivity to decrease if ion-pairs have a diffusivity comparable to those of cations and anions. However, when ion-pairs have a diffusivity larger than cations, the system can have a larger limiting current density with increasing ion association. The effective molar conductivity reaches a maximum as the degree of ion association increases. For solid polymer electrolytes under AC excitation, we find that the salt dissociation degree has a major effect on the system's impedance. The effects of forward or backward reaction rates of salt dissociation reaction on the system's impedance are negligible if the react ion rates are much faster than the diffusion process. The AC model, when combined with DC measurements and other techniques, can be used to characterize ion association and transport properties in the solid polymer electrolyte system.; We also present a mathematical model for charge/discharge of electrochemical capacitors that explicitly accounts for particle packing effects and concentration polarization in a composite electrochemical capacitor consisting of hydrous ruthenium oxide nanoparticles dispersed within porous activated carbon. Among various types of activated carbons, those with large micropore surface areas and low meso- and macropore surface areas are preferred because they give high double layer capacitance and favor efficient packing of RuO2 nanoparticles. The carbon content can be optimized to minimize the cell cost while achieving acceptable discharge performance.
机译:固态聚合物电解质(SPE)可用于构建全固态可充电锂电池,该电池提供高能量密度,并且与采用水性电解质的传统电池相比具有设计和安全优势。在这项工作中,我们研究了固体聚合物电解质中的离子缔合现象。考虑了固体聚合物电解质在直流和交流(DC和AC)激发下的离子和离子对传输。我们提供了对离子缔合对电导率,一般电流势行为,极限电流密度和电池阻抗的影响的详尽理论分析。我们发现,如果离子对具有与阳离子和阴离子相当的扩散率,则离子缔合会导致有效的摩尔电导率降低。但是,当离子对的扩散率大于阳离子时,随着离子缔合的增加,系统的极限电流密度会更大。随着离子缔合度的增加,有效摩尔电导率达到最大值。对于交流激励下的固体聚合物电解质,我们发现盐的解离度对系统的阻抗有重要影响。如果反应离子速率比扩散过程快得多,则盐离解反应的正向或反向反应速率对系统阻抗的影响可以忽略。当与直流测量和其他技术结合使用时,AC模型可用于表征固体聚合物电解质系统中的离子缔合和传输性质。我们还提出了一种电化学电容器充电/放电的数学模型,该模型明确考虑了复合电化学电容器中的颗粒堆积效应和浓度极化,该复合电化学电容器由分散在多孔活性炭中的含水氧化钌纳米颗粒组成。在各种类型的活性炭中,具有大的微孔表面积和低的中孔和大孔表面积的那些是优选的,因为它们具有高的双层电容并有利于RuO 2 纳米颗粒的有效堆积。可以优化碳含量,以最大程度降低电池成本,同时获得可接受的放电性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号