首页> 外文学位 >Simulation of Stochastic Processes: Applications in Civil Engineering.
【24h】

Simulation of Stochastic Processes: Applications in Civil Engineering.

机译:随机过程的仿真:在土木工程中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Part I deals with simulation of response spectrum compatible ground motion time histories. This part begins with a general overview of the motivation for simulating such time histories and the advantages and disadvantages of their use in structural analysis. Chapter 3 begins with an outline of some previously devised techniques for response spectrum compatible time history simulation with an emphasis on the existing Spectral Representation Method based technique. A new Spectral Representation Method based methodology is then presented for simulation of uni-variate response spectrum compatible time histories. This methodology is generalized for simulation of multi-variate response spectrum compatible time histories in Chapter 4. The relative advantages and disadvantages of this new methodology compared with the existing Spectral Representation Method based technique are discussed for both the uni-variate and multi-variate cases.;Chapter 5 deals specifically with the simulation of stationary and non-Gaussian stochastic translation processes. Of particular interest are those processes whose prescribed marginal non-Gaussian probability density function and non-Gaussian Power Spectral Density Function are "incompatible" according to translation process/field theory [27]. The chapter starts with an outline of a family of existing Spectral Representation Method based techniques for simulating these processes. A new, and significantly simpler, methodology is then proposed which reduces computational effort significantly without any loss of accuracy. The chapter concludes with numerical examples and a direct comparison of these examples with the existing technique developed by Bocchini and Deodatis [9].;Chapters 6 and 7 deal with the simulation of stochastic processes which are both non-stationary and non-Gaussian. In fact, the work in these chapters represents the first efforts toward the simulation of processes which are both non-stationary and non-Gaussian using the Spectral Representation Method. Various other techniques have been used to simulate these processes such as modal decomposition and Karhunen-Loeve Expansion/Polynomial Chaos Decomposition with differing degrees of success. However, to date, the Spectral Representation Method has not been used. In Chapter 6, a methodology for estimating the evolutionary spectrum of non-stationary and non-Gaussian processes/fields with prescribed underlying Gaussian evolutionary spectrum (or equivalently non-stationary autocorrelation function) and marginal non-Gaussian probability density function is developed. No exact formulation exists for the direct computation of the non-Gaussian evolutionary spectrum in this case. In fact, there are significant theoretical barriers which prevent such an exact computation. Therefore estimation techniques are required. These theoretical barriers are addressed and discussed. To circumvent these barriers, the estimation technique outlined in this chapter relies on a critical assumption of "local stationarity" wherein the process is considered independently stationary at each and every time instant. The technique is shown to be very accurate for processes/fields which are strongly non-Gaussian and have a significant degree of non-stationarity (specifically frequency modulation). Its limitations are presented as well and several numerical examples are given.;In Chapter 7 the so-called "reverse" case is considered where the underlying Gaussian evolutionary spectrum of processes with prescribed non-Gaussian evolutionary spectrum (or equivalently non-stationary autocorrelation function) and marginal non-Gaussian probability density function is estimated. Once again, theoretical constraints prohibit the direct computation of the underlying Gaussian evolutionary spectrum. Therefore, a technique is developed to estimate the underlying Gaussian evolutionary spectrum of processes where the prescribed non-Gaussian evolutionary spectrum and probability density function are "incompatible" according to the extension of translation process/field theory to non-stationary processes [21]. It should be mentioned that the "compatible" case involves only a trivial inversion of the technique developed in Chapter 6. The technique developed in this chapter to estimate this underlying Gaussian evolutionary spectrum uses an iterative scheme conceptually similar to that developed in Chapter 5 for stationary processes/fields. This methodology represents the first of its kind and proves to be quite accurate. Furthermore, its applications in simulation of processes/fields with significant non-stationarity and strongly non-Gaussian distribution are important. Numerical examples are presented which demonstrate both the capabilities and limitations of this technique. (Abstract shortened by UMI.)
机译:第一部分处理与响应谱兼容的地面运动时间历史的仿真。本部分首先概述了模拟此类历史记录的动机以及在结构分析中使用它们的优缺点。第3章首先概述了一些以前设计的用于响应谱兼容时程模拟的技术,重点是基于现有谱表示法的技术。然后提出了一种新的基于频谱表示方法的方法,用于仿真单变量响应频谱兼容的时间历史。在第四章中,该方法被普遍用于模拟多变量响应频谱兼容的时间历史。与单变量和多变量情况相比,该新方法与现有基于频谱表示方法的技术相比的相对优缺点被讨论。 。;第5章专门讨论静态和非高斯随机翻译过程的仿真。根据平移过程/场论[27],那些规定的边际非高斯概率密度函数和非高斯功率谱密度函数“不兼容”的过程尤其令人关注。本章首先概述了用于模拟这些过程的一系列现有的基于频谱表示方法的技术。然后提出了一种新的,更简单的方法,该方法可以显着减少计算工作量,而不会损失任何准确性。本章以数值示例结束,并将这些示例与Bocchini和Deodatis [9]开发的现有技术进行直接比较。第6章和第7章介绍了非平稳和非高斯随机过程的仿真。实际上,这些章节中的工作代表了使用谱表示法来模拟非平稳和非高斯过程的第一步。各种其他技术已被用来模拟这些过程,例如模态分解和Karhunen-Loeve展开/多项式混沌分解,并具有不同的成功程度。但是,迄今为止,尚未使用光谱表示方法。在第6章中,开发了一种方法,该方法用于估计具有规定的基本高斯演化谱(或等效的非平稳自相关函数)和边际非高斯概率密度函数的非平稳和非高斯过程/场的演化谱。在这种情况下,不存在直接计算非高斯演化谱的精确公式。实际上,存在阻止这种精确计算的重大理论障碍。因此,需要估算技术。这些理论障碍已得到解决和讨论。为了规避这些障碍,本章概述的估计技术依赖于“局部平稳性”的关键假设,其中认为该过程在每个时刻都是独立平稳的。事实证明,该技术对于非高斯,非平稳性(特别是频率调制)程度非常高的过程/场非常准确。还给出了它的局限性,并给出了几个数值示例。在第7章中,考虑了所谓的“逆向”情况,其中具有规定的非高斯演化谱(或等效的非平稳自相关函数)的过程的基础高斯演化谱)和边际非高斯概率密度函数的估计。再次,理论约束禁止直接计算潜在的高斯演化谱。因此,根据翻译过程/场论向非平稳过程的扩展,开发了一种估算过程的基础高斯演化谱的方法,其中规定的非高斯演化谱和概率密度函数“不兼容” [21]。应当指出的是,“兼容”情况仅涉及第6章中开发的技术的一个简单的反演。本章中开发的用于估计该基本高斯演化谱的技术使用的迭代方案在概念上类似于第5章中针对平稳性开发的方案。进程/字段。这种方法代表了同类方法中的第一个,并且被证明是非常准确的。此外,其在具有显着的非平稳性和强非高斯分布的过程/场的模拟中的应用也很重要。数值示例说明了该技术的功能和局限性。 (摘要由UMI缩短。)

著录项

  • 作者

    Shields, Michael D.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号