首页> 外文学位 >Quantum mechanical approaches to the prediction of phase equilibria: Solvation thermodynamics and group contribution methods.
【24h】

Quantum mechanical approaches to the prediction of phase equilibria: Solvation thermodynamics and group contribution methods.

机译:预测相平衡的量子力学方法:溶剂热力学和基团贡献法。

获取原文
获取原文并翻译 | 示例

摘要

A priori phase equilibria predictions necessary for the development, design, and optimization of chemical processes are one major challenge in chemical engineering. The aim of this dissertation is to develop new computational schemes that allow determination of thermodynamic properties and phase behavior from modern computational chemistry and/or advanced group contribution calculations.; The approach we take involves calculating property changes for molecular solvation, i.e., the transfer of a molecule from an ideal gas to a solution. The corresponding free energy change, referred to as the solvation free energy, can be used to determine the vapor pressure and activity coefficient, from which phase equilibrium predictions are made. A new solvation model is developed to utilize results from high level molecular orbital computations and minimize the error from simplification of the solvent as a continuum. This model is found to be more accurate for infinite dilution activity coefficients and partition coefficients than other methods, such as UNIFAC or modified UNIFAC.; Another issue addressed is the development of new group contribution techniques. Simple group contribution methods do not differentiate between isomers and can lead to severe errors for molecules containing multiple strong functional groups in close proximity. Quantum mechanical calculations reveal that the variation of electron density distribution of a functional group due to the presence of a nearby strongly electronegative or electropositive group changes the group-solvent interactions which lead to the deficiencies in present group contribution methods. A multipole correction method is developed to resolve the isomer and proximity problems. This method results in accurate predictions for octanol/water partition coefficients, Henry's law constants, and several pure fluid properties.; Finally an exact statistical mechanical model is developed to calculate the solvation free energy based on the induced screening charges at the molecular surface during ideal solvation. This model dissects molecules into surface segments, determines the segment activity coefficient from segment-segment interactions, and calculates molecular activity coefficients from summing contributions over all the segments. This approach uses significantly fewer parameters than other methods (2 versus 168 in UNIFAC and 612 in modified UNIFAC) for the prediction of vapor-liquid equilibrium and provides a priori prediction for new compounds.
机译:化学过程的开发,设计和优化所必需的先验阶段平衡预测是化学工程中的一大挑战。本论文的目的是开发新的计算方案,该方案允许通过现代计算化学和/或高级基团贡献计算确定热力学性质和相行为。我们采用的方法涉及计算分子溶剂化的特性变化,即分子从理想气体到溶液的转移。相应的自由能变化(称为溶剂化自由能)可用于确定蒸气压和活度系数,据此可进行相平衡预测。开发了一种新的溶剂化模型,以利用高水平分子轨道计算的结果,并最大程度地减少简化溶剂(作为连续统)产生的误差。发现该模型对于无限稀释活度系数和分配系数比其他方法(例如,UNIFAC或改进的UNIFAC)更准确。解决的另一个问题是开发新的小组贡献技术。简单的基团贡献方法无法区分异构体,并且可能导致包含紧密相邻的多个强官能团的分子出现严重错误。量子力学计算表明,由于附近强电负性或正电性基团的存在,官能团的电子密度分布发生变化,从而改变了基团与溶剂之间的相互作用,从而导致了现有基团贡献方法的不足。开发了一种多极校正方法来解决异构体和邻近问题。该方法可以准确预测辛醇/水分配系数,亨利定律常数和几种纯流体性质。最后,根据理想溶剂化过程中分子表面的诱导筛选电荷,开发了精确的统计力学模型来计算溶剂化自由能。该模型将分子分解为表面片段,从片段-片段相互作用确定片段活性系数,并通过汇总所有片段的贡献来计算分子活性系数。与其他方法相比,该方法使用的参数要少得多(在UNIFAC中为2,而在UNIFAC中为168,在改进的UNIFAC中为612),并提供了对新化合物的先验预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号