首页> 外文学位 >Probing chlorine reactivity of dissolved organic matter for disinfection by-product (DBP) formation: Relations with specific ultraviolet absorbance (SUVA) and development of the DBP reactivity profile.
【24h】

Probing chlorine reactivity of dissolved organic matter for disinfection by-product (DBP) formation: Relations with specific ultraviolet absorbance (SUVA) and development of the DBP reactivity profile.

机译:探测溶解有机物的氯反应性以形成消毒副产物(DBP):与特定紫外线吸收率(SUVA)的关系以及DBP反应性谱的发展。

获取原文
获取原文并翻译 | 示例

摘要

The main objective of this study was to systematically probe the chlorine reactivity of DOM for DBP formation and speciation in selected natural waters. DOM was fractionated employing various physicochemical separation processes in two different approaches: bulk water fractionation (granular activated carbon (GAC) and XAD-8 resin adsorption, and alum coagulation) and isolation/fractionation (ultrafiltration (UF) and resin adsorption chromatography (RAC)). Several DOM fractions (50–100) were obtained for each water tested. The impact of GAC surface chemistry on DOM uptake and on the subsequent DBP formation was also investigated in detail.; GAC and XAD-8 adsorption and alum coagulation fractionated DOM in waters based on specific ultraviolet absorbance (SUVA). By increasing the adsorbent or coagulant dose in small increments and preferentially removing high-SUVA fractions from water, it was possible to probe the reactivity of different fractions in a SUVA distribution that appears to exist in natural waters. Knowing the SUVA distribution and its relationship to reactivity seems to be more important and informative than the source water aggregate SUVA value. The use of bulk water fractionation is a new and promising approach for characterizing DBP reactivity in natural waters. DOM removal and subsequent reductions in DBP formation can be maximized by selecting hydrophobic GACs with minimal surface acidity and mesoporous characteristics.; A new experimental approach, called the DBP reactivity profile, has been developed to monitor and predict the reactivity of DOM fractions in natural waters for DBP formation as well as to optimize and evaluate different technologies for DOM removal and DBP control. This approach was based on the observation that there was a single and strong correlation between the SUVA values and DBP (THMs and HAA9) formation of DOM fractions, independent of the physicochemical separation process used to obtain the fractions. In addition, since low- or non-UV absorbing components of DOM are also captured to different degrees in the fractions, DBP reactivity profiles also allow monitoring of their reactivities. The trends in the reactivity profiles indicated that the UV-absorbing components of DOM are the major reactive sites responsible for DBP formation. The extent of brominated THMs and HAA9 formation was found to be larger in lower-SUVA (i.e., less aromatic), hydrophilic-dominant, and smaller-molecular weight DOM fractions.; Experimental and theoretical reconstitution of source waters from reverse osmosis (RO), RAC or UF isolates/fractions showed that these processes did not statistically modify the original characteristics and DBP reactivity of DOM at the source waters. The contribution of each RAC or UF fraction to total THMs or HAA9 yields was linearly cumulative, indicating that fractions had no synergistic effects on total DBP formation. Although hydrophobic fractions had larger DBP yields than those of hydrophilic fractions and source waters, hydrophilic fractions exhibited appreciable DBP yields.
机译:这项研究的主要目的是系统地研究DOM在选定的天然水中对DBP形成和形态形成的氯反应性。使用两种不同的方法,采用各种物理化学分离方法对DOM进行分级分离:批量水分级分离(颗粒活性炭(GAC)和XAD-8树脂吸附,明矾凝结)和分离/分级分离(超滤(UF)和树脂吸附色谱(RAC)) )。对于每种测试水,均获得了几个DOM分数(50-100)。还详细研究了GAC表面化学对DOM吸收和随后DBP形成的影响。 GAC和XAD-8吸附和明矾凝结法根据特定的紫外线吸收率(SUVA)分离水中的DOM。通过以较小的增量增加吸附剂或凝结剂的剂量,并优先从水中去除高SUVA馏分,便可以探查天然水中似乎存在的SUVA分布中不同馏分的反应性。知道SUVA的分布及其与反应性的关系似乎比水源水的SUVA总值更重要和更有意义。大量水分馏的使用是表征天然水中DBP反应性的一种新的有前途的方法。通过选择具有最小表面酸度和中孔特性的疏水性GAC,可以最大程度地去除DOM和减少DBP的形成。已经开发出一种新的实验方法,称为DBP反应性概况,用于监视和预测天然水中DOM组分对DBP形成的反应性,以及优化和评估用于DOM去除和DBP控制的不同技术。该方法基于以下观察结果:SUVA值与DOM组分的DBP(THM和HAA 9 )形成之间存在单一且强相关性,而与用于获得这些组分的物理化学分离过程无关。此外,由于DOM的低吸收性或非紫外吸收性组分也被不同程度地捕获,因此DBP反应性曲线也可以监控其反应性。反应性分布的趋势表明,DOM的紫外线吸收成分是负责DBP形成的主要反应部位。在较低的SUVA(即芳香度较低),亲水性占主导地位和较小分子量的DOM组分中,溴化THM和HAA 9 的形成程度较大。通过反渗透(RO),RAC或UF分离物/馏分对源水进行实验和理论重构,结果表明,这些过程并未统计学上改变DOM在源水的原始特征和DBP反应性。每个RAC或UF组分对总THM或HAA 9 产量的贡献是线性累积的,表明这些组分对总DBP的形成没有协同作用。尽管疏水性馏分的DBP产率比亲水性馏分和源水的DBP产率高,但亲水性馏分的DBP产率却很高。

著录项

  • 作者

    Kitis, Mehmet.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Environmental.; Environmental Sciences.; Engineering Sanitary and Municipal.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 360 p.
  • 总页数 360
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境污染及其防治;环境科学基础理论;建筑科学;
  • 关键词

  • 入库时间 2022-08-17 11:46:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号