首页> 外文学位 >Optical nanocavities in two-dimensional photonic crystal planar waveguides.
【24h】

Optical nanocavities in two-dimensional photonic crystal planar waveguides.

机译:二维光子晶体平面波导中的光学纳米腔。

获取原文
获取原文并翻译 | 示例

摘要

One of the most fundamental properties of a physical system is its energy-momentum dispersion. The electronic dispersion present in semiconductor crystals results in energy gaps which play an extremely important role in the physics of many of the electronic and optical devices we use today. A similar dispersion for electromagnetic waves can be found in periodic dielectric structures. Owing to their strong dispersion, these “photonic crystals” can be used to manipulate light at sub-wavelength scales. The majority of this thesis is concerned with the design and implementation of optical resonant cavities formed by introducing small local imperfections into a periodically perforated slab waveguide. Light becomes localized to these “defect” regions, forming optical cavities with modal volumes approaching the theoretical limit of a cubic half-wavelength.; The resonant cavities studied in this thesis are fabricated using electron-beam lithography, anisotropic dry etching, and selective wet etching. These methods are used to create a two-dimensional array of cylindrical air holes in a free-standing waveguide structure. A multi-quantum-well Indium Gallium Arsenide Phosphide (InGaAsP) active region is epitaxially grown within the waveguide in order to provide light emission in the 1.5 μm band. Optical pumping of the active region is then used to probe the resonant structure of the photonic crystal cavities.; Numerical finite-difference time-domain simulations and qualitative predictions based on symmetry arguments are used to label the different resonant modes present in the cavity photoluminescence spectra. It is found that both donor and acceptor type modes are localized within the defect cavities. Pulsed lasing action is observed in cavity modes with modal volumes as small as 2(λ/2 n)3. Lithographic adjustments in the scale and symmetry of the cavity geometry are also used to tune the resonant mode wavelength, split mode degeneracies, and adjust the emission pattern and polarization of the defect modes.
机译:物理系统的最基本特性之一是其能量动量色散。半导体晶体中存在的电子色散会导致能隙,这些能隙在当今我们使用的许多电子和光学设备的物理中起着极其重要的作用。在周期性介电结构中可以发现类似的电磁波色散。由于它们的强分散性,这些“光子晶体”可用于在亚波长范围内操纵光。本文的大部分内容是关于通过在周期性穿孔的平板波导中引入小的局部缺陷而形成的光学谐振腔的设计和实现。光变得局限在这些“缺陷”区域,形成模腔体积接近立方半波长理论极限的光腔。本文研究的谐振腔是利用电子束光刻,各向异性干法刻蚀和选择性湿法刻蚀制造的。这些方法用于在独立的波导结构中创建圆柱气孔的二维阵列。多量子阱砷化铟镓磷化物(InGaAsP)有源区在波导内外延生长,以提供1.5μm的发射光。有源区的光泵浦然后用于探测光子晶体腔的谐振结构。基于对称参数的数值有限差分时域仿真和定性预测用于标记腔体光致发光光谱中存在的不同共振模式。发现供体和受体类型模式都位于缺陷腔内。在模腔体积小到2(λ/ 2 n 3 的腔模中观察到脉冲激射作用。腔体几何形状的比例和对称性的光刻调整也可用于调谐共振模式波长,分裂模式简并性,并调整发射模式和缺陷模式的极化。

著录项

  • 作者

    Painter, Oskar Jon.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号