首页> 外文学位 >Applications of creosotebush in phytoremediation of copper(II) and chromium(VI) ions.
【24h】

Applications of creosotebush in phytoremediation of copper(II) and chromium(VI) ions.

机译:creosotebush在铜(II)和铬(VI)离子的植物修复中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Larrea tridentata (creosotebush), a common, North American native desert shrub, shows the ability to take up copper(II) and chromium(VI) ions rapidly from solution. EPA method 200.3 was followed to digest the plant samples and flame atomic absorption spectroscopy (FAAS) was used to determine-the amount of copper and chromium taken up in different parts of the plant. The amount of copper found within the roots, stems, and leaves was 13.8 mg/g, 1.1 mg/g and 0.6 mg/g, respectively, after the creosote bush was exposed to a 63.5-ppm copper(II) solution for 48 hours. When the plant was exposed to a 635-ppm copper(II) solution, the roots, stems and leaves contained 35 mg/g, 10.5 and 3.8, respectively. The amount of chromium found within the roots, stems, and leaves was 57.4 mg/g, 14.2 mg/g and 19.3 mg/g, respectively, after the creosote bush was exposed to a 520-ppm chromium(VI) solution. In addition to FAAS analysis, X-ray microfluorescence (XRMF) analysis of the plant samples provided in situ documentation of copper and chromium absorption by the various plant parts. It was noticed with XRMF, a higher content of copper when the plant was exposed to a higher copper concentration. Also, higher amounts were detected on the roots, followed by the stems and the smallest amount was detected in the leaves. In the case of chromium, XRMF showed that the higher chromium content was present on the roots followed by the leaves and finally the lowest chromium content was observed on the stems. X-ray absorption spectroscopy (XAS) elucidated the oxidation state of the copper and chromium absorbed by the plants. The copper(II) absorbed from solution remained as copper(II) bound to oxygen-containing ligands within the plant samples. On the other hand, the chromium(VI) absorbed from solution was partially reduced to chromium(III) in the roots. Some chromium(VI) and the reduced chromium(III), were transported through the stems, and finally accumulated as chromium(III) in the leaves of the plant. Chromium was bound to oxygen-containing ligand within the plant samples. Another analytical technique used to detect the metal-compound ligands was Fourier Transform Infrared Spectroscopy (FT-IR). FT-IR corroborated the presence of the copper-oxygen bond, most likely from a carboxyl group. (Abstract shortened by UMI.)
机译: Larrea tridentata (creosotebush)是北美常见的一种沙漠灌木,显示出能够从溶液中快速吸收铜(II)和铬(VI)离子的能力。 EPA方法200.3用于消化植物样品,火焰原子吸收光谱法(FAAS)用于确定植物不同部位吸收的铜和铬量。在将杂酚丛暴露于63.5-ppm的铜(II)溶液中48小时后,在根,茎和叶中发现的铜量分别为13.8 mg / g,1.1 mg / g和0.6 mg / g。 。当植物暴露于635 ppm的铜(II)溶液中时,根,茎和叶的含量分别为35 mg / g,10.5和3.8。在杂酚丛暴露于520-ppm铬(VI)溶液后,在根,茎和叶中发现的铬量分别为57.4 mg / g,14.2 mg / g和19.3 mg / g。除FAAS分析外,对植物样品的X射线微荧光(XRMF)分析还提供了植物各个部位对铜和铬吸收的原位文件。使用XRMF注意到,当工厂暴露于较高的铜浓度时,铜的含量较高。同样,在根部检出的含量更高,其次是茎,叶中检出的含量最小。在铬的情况下,XRMF表明,根系中的铬含量较高,其次是叶片,最后茎中的铬含量最低。 X射线吸收光谱法(XAS)阐明了植物吸收的铜和铬的氧化态。从溶液中吸收的铜(II)保留为与植物样品中含氧配体结合的铜(II)。另一方面,从溶液吸收的铬(VI)在根部部分还原为铬(III)。一些铬(VI)和还原的铬(III)通过茎秆运输,最终以铬(III)的形式积累在植物的叶子中。铬与植物样品中的含氧配体结合。用于检测金属化合物配体的另一种分析技术是傅立叶变换红外光谱(FT-IR)。 FT-IR证实了铜-氧键的存在,很可能来自羧基。 (摘要由UMI缩短。)

著录项

  • 作者

    Arteaga, Maria del Socorro.;

  • 作者单位

    The University of Texas at El Paso.;

  • 授予单位 The University of Texas at El Paso.;
  • 学科 Environmental Sciences.; Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境科学基础理论;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号