首页> 外文学位 >An experimental and mathematical analysis of nerve growth cone motility based on cytoskeletal actin dynamics.
【24h】

An experimental and mathematical analysis of nerve growth cone motility based on cytoskeletal actin dynamics.

机译:基于细胞骨架肌动蛋白动力学的神经生长锥运动性的实验和数学分析。

获取原文
获取原文并翻译 | 示例

摘要

During development and regeneration, nerve growth cones, in response to their environment, control the rate and direction of neurite outgrowth. Dynamic changes in the structure of the underlying cytoskeleton have been implicated in the outgrowth process, and the cytoskeletal protein actin is thought to be of primary importance. Polymerization of actin filaments leading to extension of lamellipodia and filopodia, retrograde translocation of actin filaments, and interactions with the substratum all combine to move the growth cone towards its appropriate target. To provide a quantitative and mechanistic basis for determining the contribution of cytoskeletal actin in growth cone movement, a model describing actin dynamics within the growth cone was developed.; The model accounts for actin polymerization and flow, as well as forces thought to affect growth cone movement. Actin polymerization at the leading front of the growth cone is assumed to be responsible for protrusion while a constant retrograde force acting throughout the growth cone results in rearward flow of polymer. The balance between polymerization and retrograde flow results in motility. In addition, environmental factors are incorporated into the model in the form of interactions with the substrate, which are believed to modify motility.; Shape and movement characteristics from growth cone simulations were compared to those of chick dorsal root ganglia growth cones using time series analyses such as the mean value, root mean square error, and the autocorrelation function. In addition to observing similar behaviors for experimental growth cones in terms of movement parameters, root mean square analysis showed that the simulation results describe all growth cone shape and movement parameters measured to within an order of magnitude agreement, while the mean value analysis showed that intermediate values of substrate attachment are closest in agreement to those of experiment. The autocorrelation functions of simulated growth cone turn angles show a pattern of behavior similar to that of experimental growth cones. These results show that growth cone behavior, while highly dynamic, demonstrates a similar type of behavior for movement parameters for different growth cones. The model simulation results lend insight into possible mechanisms of actin contribution to growth cone motility.
机译:在发育和再生过程中,神经生长锥根据其周围环境控制神经突向外生长的速度和方向。基本的细胞骨架结构的动态变化与生长过程有关,并且细胞骨架蛋白肌动蛋白被认为是最重要的。肌动蛋白丝的聚合导致层状脂膜和丝状伪足的延伸,肌动蛋白丝的逆行移位以及与基质的相互作用,共同使生长锥移向其合适的靶标。为了为确定细胞骨架肌动蛋白在生长锥运动中的贡献提供定量和机理基础,开发了描述生长锥内肌动蛋白动力学的模型。该模型考虑了肌动蛋白的聚合和流动,以及影响生长锥运动的力。假定生长锥前端的肌动蛋白聚合是导致突出的原因,而作用在整个生长锥上的恒定逆行力会导致聚合物向后流动。聚合和逆流之间的平衡导致运动。另外,环境因素以与底物相互作用的形式结合到模型中,据认为可改变运动性。使用时间序列分析(例如平均值,均方根误差和自相关函数),将生长锥模拟的形状和运动特征与鸡背根神经节生长锥的形状和运动特征进行比较。除了在运动参数方面观察到实验生长锥的类似行为外,均方根分析还表明,模拟结果还描述了所有生长锥的形状和运动参数,测量值均在一个数量级内,而平均值分析表明,中间底物附着值最接近实验值。模拟生长锥转角的自相关函数显示出与实验生长锥相似的行为模式。这些结果表明,生长锥行为虽然是高度动态的,但对于不同的生长锥而言,其运动参数也表现出相似的行为类型。模型仿真结果有助于深入了解肌动蛋白对生长锥运动的贡献机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号