首页> 外文学位 >The temperature biology of vertebrate actins and the actin-based motility of fish keratocytes.
【24h】

The temperature biology of vertebrate actins and the actin-based motility of fish keratocytes.

机译:脊椎动物肌动蛋白的温度生物学和鱼类角化细胞基于肌动蛋白的运动。

获取原文
获取原文并翻译 | 示例

摘要

The work described herein focuses on the evolution of vertebrate actins in species adapted to various temperatures. I began by sequencing alpha-actins from five ectotherms living across a range of environmental temperatures (-1.86°C to 45°C), and purified alpha-actin from the two species living at the ends of this temperature range to determine thermal stability in vitro , alpha-actins of the two species which display the most disparate body temperatures (a difference of 47°C), do not differ in their primary sequence and their thermal stabilities are not significantly different from each other. I conclude that vertebrate alpha-actin is sufficiently conserved to preclude thermal adaptation at the level of primary sequence. Next, these sequences allowed for a unique examination of the GC-adaptation temperature hypothesis by examining patterns of base composition of genes encoding lactate dehydrogenase-A and alpha-actin from 51 species of vertebrates whose adaptation temperatures ranged from -1.86°C to approximately 45°C. No significant positive correlation was found between any index of GC content and any index of adaptation temperature. Finally, I characterized the effect of temperature on actin-based cell motility in fish epithelial keratocytes from fish adapted to different temperatures. Keratocyte speed increases with increasing temperature; average speed is conserved at physiological temperature for temperate and tropical species. Analysis of angular velocity reveals that keratocytes take straighter paths at lower temperatures, and more circular paths or paths "doubling-back" upon themselves at higher temperatures, although this is affected by thermal acclimation. However, acclimation does not alter the effect of experimental temperature on cellular speed. These findings suggest that more than one temperature-sensitive mechanism may govern cell motility. I also investigated the role of membrane fluidity in cell motility as a putative mechanism underlying the effects of temperature. I used small particle tracking to monitor the change in diffusion coefficient at different temperatures and in the presence and absence of the detergent deoxycholate. Changes in diffusion coefficient did not correlate with changes in cell speed under any condition. These results demonstrate that membrane fluidity does not govern the rate of cell movement and cannot account for the large effects of temperature on cell speed.
机译:本文所述的工作集中在适应各种温度的物种中脊椎动物肌动蛋白的进化。我首先对生活在一定环境温度范围(-1.86°C至45°C)的5个放热峰中的α-肌动蛋白进行测序,然后从该温度范围末端的两个物种纯化得到的α-肌动蛋白,以确定其在温度范围内的热稳定性。在体外,这两种物种的α-肌动蛋白表现出最不同的体温(相差47°C),其一级序列没有差异,并且其热稳定性也没有显着差异。我得出的结论是,脊椎动物α-肌动蛋白被充分保守,以防止在一级序列水平上发生热适应。接下来,这些序列通过检查51种脊椎动物的适应温度范围为-1.86°C至约45的脊椎动物中的乳酸脱氢酶A和α-肌动蛋白的编码基因的基本组成,可以对GC适应温度假说进行独特的研究。 ℃。在任何GC含量指标和任何适应温度指标之间均未发现显着正相关。最后,我描述了温度对适应不同温度的鱼类鱼上皮角化细胞中肌动蛋白基细胞运动的影响。角质形成细胞的速度随着温度的升高而增加。温带和热带物种在生理温度下保持平均速度。角速度分析表明,角膜细胞在较低温度下会走直线路径,而在较高温度下会出现更多的圆形路径或“重返”路径,尽管这会受到热适应的影响。但是,适应不会改变实验温度对细胞速度的影响。这些发现表明,不止一种温度敏感性机制可以控制细胞运动。我还研究了膜流动性在细胞运动中的作用,这是潜在的影响温度的机制。我使用小颗粒跟踪来监测在不同温度下以及在有无去氧胆酸盐洗涤剂的情况下扩散系数的变化。在任何情况下,扩散系数的变化与细胞速度的变化均不相关。这些结果表明,膜流动性不能控制细胞运动的速率,也不能解释温度对细胞速度的巨大影响。

著录项

  • 作者

    Ream, Rachael Ann.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Biology Animal Physiology.;Biology Cell.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号