首页> 外文学位 >Airborne radar interference suppression using adaptive three-dimensional techniques.
【24h】

Airborne radar interference suppression using adaptive three-dimensional techniques.

机译:使用自适应三维技术抑制机载雷达干扰。

获取原文
获取原文并翻译 | 示例

摘要

This research advances adaptive interference suppression techniques for airborne radar, addressing the problem of target detection within severe interference environments characterized by high ground clutter levels, noise jammer infiltration, and strong discrete interferers. Two-dimensional (2D) Space-Time Adaptive Processing (STAP) concepts are extended into three-dimensions (3D) by casting each major 2D STAP research area into a 3D framework. The work first develops an appropriate 3D data model with provisions for range ambiguous clutter returns. Adaptive 3D development begins with two factored approaches, 3D Factored Time-Space (3D-FTS) and Elevation-Joint Domain Localized (Elev-JDL). The 3D-FTS technique exhibits greater than 15 dB improvement (over 2D-FTS) in Relative Peak Sidelobe Level (RPSL) using data from the Multi-Channel Airborne Radar Measurement (MCARM) program. The 3D adaptive development continues with optimal techniques, i.e., joint domain methods. First, the 3D Matched Filter (3D-MF) is derived followed by a 3D Adaptive Matched Filter (3D-AMF) discussion focusing on well-established practical limitations consistent with the 2D case. Finally, a 3D-JDL method is introduced and demonstrates target detection improvement of approximately 10∼dB and 57 dB when compared to 2D-JDL and 2D-FTS, respectively, using an 8 x 8 non-uniform rectangular array and eight pulses. Proposed 3D Hybrid methods extend current state-of-the-art 2D hybrid methods. The initial 3D hybrid, a functional extension of the 2D technique, exhibits distinct performance advantages in heterogeneous clutter. The final 3D hybrid method is virtually impervious to discrete interference; an RPSL of −16.15 dB, versus 8.77 dB and 6.56 dB for the inverse 3D hybrid and 3D extension, respectively, was achieved for a given data realization. An average RPSL of −9.71 dB with standard deviation of 5.58 dB was achieved across 500 realizations.
机译:这项研究改进了机载雷达的自适应干扰抑制技术,解决了在地面高杂波,噪声干扰渗透和强离散干扰物等严重干扰环境中进行目标检测的问题。通过将每个主要的2D STAP研究领域投射到3D框架中,将二维(2D)时空自适应处理(STAP)概念扩展为三维(3D)。这项工作首先开发了一种适当的3D数据模型,其中规定了范围不明确的杂波返回。自适应3D开发从两种分解方法开始,即3D分解时空(3D-FTS)和局部高程联合域(Elev-JDL)。 3D-FTS技术使用来自多通道机载雷达测量(MCARM)程序的数据,相对峰值旁瓣电平(RPSL)表现出超过15 dB的改进(超过2D-FTS)。 3D自适应开发继续采用最佳技术,即联合域方法。首先,推导3D匹配滤波器(3D-MF),然后进行3D自适应匹配滤波器(3D-AMF)讨论,重点讨论与2D情况一致的公认实用限制。最后,介绍了一种3D-JDL方法,并证明了使用8 x 8非均匀矩形阵列和8个脉冲分别与2D-JDL和2D-FTS相比,目标检测改进了大约10dB和57dB。提议的3D混合方法扩展了当前最先进的2D混合方法。最初的3D混合动力是2D技术的功能扩展,在异类杂波中表现出明显的性能优势。最终的3D混合方法几乎不受离散干扰的影响。对于给定的数据实现,RPSL为-16.15 dB,而逆3D混合和3D扩展的RPSL分别为8.77 dB和6.56 dB。在500个实现中,平均RPSL为-9.71 dB,标准偏差为5.58 dB。

著录项

  • 作者

    Hale, Todd Benjamin.;

  • 作者单位

    Air Force Institute of Technology.;

  • 授予单位 Air Force Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 246 p.
  • 总页数 246
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号