首页> 外文学位 >A unified approach to modeling delamination and matrix cracking in smart composite structures.
【24h】

A unified approach to modeling delamination and matrix cracking in smart composite structures.

机译:智能复合结构中分层和基体开裂建模的统一方法。

获取原文
获取原文并翻译 | 示例

摘要

The development of smart structures technology has coincided with the increased use of composite materials in structural design. Composite laminates have forms of damage that are not found in other materials, specifically delamination and transverse matrix cracking. An in-depth understanding of the effects of damage on smart composite structures is necessary for predicting not only the life of the structure, but also for modeling any method to be used for damage detection. The objective of this research was to develop a comprehensive model for accurately and efficiently modeling smart composite structures including the effects of composite damage.; First, a new, efficient method for modeling smart structures with piezoelectric devices was developed. The coupled model simultaneously solves for the mechanical and electrical response of the system using mechanical displacements and electrical displacements. The developed theory utilizes a refined higher order displacement field that accurately captures the transverse shear deformation in moderately thick laminates.; The model was then extended to include internal damage in the form of delamination and matrix cracking. When delamination is present, the sublaminates are modeled as individual plates and continuity is enforced at the interfaces. Matrix cracking was modeled as a reduction in laminate stiffness using parameters determined using finite element analysis of a representative crack.; Finally, the simultaneous optimization of both mechanical and electrical parameters in an adaptive structural system was studied. This study demonstrates how multidisciplinary optimization techniques, such as the Kreisselmeier-Steinhauser function, can be utilized to optimize both structural and electrical aspects of an adaptive structural system. Optimization of piezoelectric actuator placement and electrical circuitry was performed on passive electrical damping systems.; Results show that the developed model is capable of accurately modeling both the mechanical and electrical response of adaptive structures. These results show that traditional uncoupled piezoelectric modeling techniques do not take into account many electrical effects, resulting in significant errors in the sensor response predicted for transient loads. The developed model provides the ability to predict the effect of composite damage on the behavior of adaptive structures and to model potential methods to be used for damage detection.
机译:智能结构技术的发展与结构设计中复合材料使用的增加相吻合。复合材料层压板具有其他材料中未发现的损坏形式,特别是分层和横向基体开裂。需要深入了解损伤对智能复合结构的影响,不仅可以预测结构的寿命,而且还可以用于建模任何用于损伤检测的方法。这项研究的目的是开发一个综合模型,以准确有效地对智能复合结构进行建模,包括复合材料损伤的影响。首先,开发了一种新型的利用压电器件对智能结构进行建模的有效方法。耦合模型使用机械位移和电气位移同时解决系统的机械和电气响应。发达的理论利用了精确的高阶位移场,该场可以精确地捕获中等厚度层压板的横向剪切变形。然后将模型扩展到包括分层和基体开裂形式的内部损坏。如果存在分层,则将子分层建模为单独的板,并在界面处增强连续性。使用代表裂纹的有限元分析确定的参数将基体裂纹建模为层压板刚度的降低。最后,研究了自适应结构系统中机械和电气参数的同时优化。这项研究表明如何利用多学科优化技术(例如Kreisselmeier-Steinhauser函数)来优化自适应结构系统的结构和电气方面。压电致动器布置和电路的优化是在无源电阻尼系统上进行的。结果表明,所开发的模型能够准确地建模自适应结构的机械和电气响应。这些结果表明,传统的非耦合压电建模技术并未考虑许多电效应,从而导致了针对瞬态负载预测的传感器响应中的重大误差。所开发的模型提供了预测复合材料损伤对自适应结构性能的影响以及对可能用于损伤检测的方法进行建模的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号