首页> 外文学位 >Technologies for and electrophysiological studies of structured, living, neuronal networks on microelectrode arrays.
【24h】

Technologies for and electrophysiological studies of structured, living, neuronal networks on microelectrode arrays.

机译:微电极阵列上的结构化,活动性神经元网络的技术和电生理研究。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we have developed techniques for modifying and patterning surfaces for cellular growth and applied them to the recording of electrical activity of neurons grown in patterns. We found that silanes can attach to oxygen-plasma-treated polyimide and platinum and remain bound for at least 8 weeks. Attached silane also permits further chemical modification through cross-linkers. We also improved protein microstamping using a release layer and made it compatible with extended use and cell growth. Amphiphiles with various head groups were tested and shown to attract or repel proteins, suggesting the possibility of stamping supramolecular structures.; We also recorded neurons patterned by photoresist image transfer and found patterned neurons capable of firing action potentials. Their firing depended on neuronal communication as action potentials were suppressed by high magnesium media. In addition, we found that network activity depended on network morphology. Well-confined networks fired action potentials independent of cell density and varied minimally in activity level, while less-confined networks had both greater dependence and variation. We attributed this effect to the greater glia:neuron interaction as both glial and synaptic density were higher in patterned than in random cultures. This interaction may depend on cell density, as synaptic density was equivalent in both patterned and random cultures when cultures were initiated at a lower plating density, implying that neuronal growth was stunted when culture is sparse. Currently, we cannot distinguish the direct effects of patterning on synaptic efficacy from the indirect effects of glia because our experiments were not designed to distinguish them. Future experiments should be conducted to test the hypothesis that distributed connectivity weakens the contribution of each synapse to cellular depolarization.
机译:在本文中,我们开发了用于修饰和图案化细胞生长表面的技术,并将其应用于记录以图案生长的神经元的电活动。我们发现硅烷可以附着在氧等离子体处理的聚酰亚胺和铂上,并保持结合至少8周。连接的硅烷还可以通过交联剂进行进一步的化学修饰。我们还改进了使用释放层的蛋白质微标记,使其与长期使用和细胞生长兼容。测试了具有不同头基的两亲物,并显示出它们吸引或排斥蛋白质的可能性,这表明可能会形成超分子结构。我们还记录了通过光致抗蚀剂图像转移模式化的神经元,并发现了能够激发动作电位的模式化神经元。他们的放电取决于神经元的交流,因为高镁培养基抑制了动作电位。此外,我们发现网络活动取决于网络形态。密闭的网络激发独立于细胞密度的动作电位,并且在活动水平上变化最小,而密闭的网络则具有更大的依赖性和变异性。我们将此效应归因于更大的神经胶质:神经元相互作用,因为图案化的神经胶质和突触密度均高于随机培养。这种相互作用可能取决于细胞密度,因为当以较低的平板密度开始培养时,在模式培养和随机培养中突触密度均相等,这意味着在培养稀疏时神经元生长受到阻碍。目前,我们无法将模式对突触功效的直接影响与神经胶质的间接影响区分开,因为我们的实验并非旨在区分它们。未来的实验应该进行以验证以下假设:分布式连接削弱了每个突触对细胞去极化的贡献。

著录项

  • 作者

    Chang, John Chi-Hung.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.; Biophysics General.; Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;生物物理学;神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号