首页> 外文学位 >Synthesis and characterization of nitrogen-rich gallium nitride arsenide alloys.
【24h】

Synthesis and characterization of nitrogen-rich gallium nitride arsenide alloys.

机译:富氮氮化镓砷化物合金的合成与表征。

获取原文
获取原文并翻译 | 示例

摘要

The last decade has witnessed rapid development in the understanding and implementation of wide band gap semiconductors, such as gallium nitride and related compounds. At the same time, the advances in already mature gallium arsenide-based technology continue to follow the success of previously conducted material synthesis studies. The possibility of forming ternary and quaternary alloys combining both nitrides and arsenides has become one of the latest frontiers of compound semiconductor research. While arsenic-rich GaNAs alloys have been synthesized and studied by several groups, the alloys containing small percentage of arsenic in the gallium nitride matrix are less thoroughly explored.; In the course of the present investigation, nitrogen-rich GaNAs alloys containing 3–4% of arsenic anion fraction were successfully synthesized by metalorganic chemical vapor deposition—arsenic content in these films constitutes the highest level of incorporation reported to date. Structural and optical characterization of GaNAs phase resulted in a conclusion that arsenic participates in a metastable alloy formation, and phase segregation into binary GaN and GaAs phases occurs only upon annealing of the films. It was demonstrated that substrate plays a significant role in stabilizing the ternary nitrogen-rich phase, which is most likely to form on GaN template. Band gap reduction as a result of arsenic incorporation was quantified based on the optical transmission spectra, yielding an estimate for the bowing parameter of 25 eV in the films with the arsenic content of 3.5%.; In addition, other growth regimes were investigated, such as arsenic doping of high quality GaN layers, and variation of arsenic content in the films with the change in growth temperature. Arsenic incorporation at the doping levels was shown to improve transport and optical properties of GaN layers. Future research effort in the area may focus on obtaining P-type material with the band gap lower than that of GaN, by simultaneous incorporation of arsenic and magnesium in GaNAs films.
机译:过去十年见证了对宽带隙半导体(如氮化镓和相关化合物)的理解和实施的飞速发展。同时,已经成熟的基于砷化镓的技术的发展继续遵循先前进行的材料合成研究的成功。形成氮化物和砷化物结合的三元和四元合金的可能性已经成为化合物半导体研究的最新领域之一。虽然已经由几组合成和研究了富砷的GaNAs合金,但对氮化镓基体中砷含量低的合金的研究还不够深入。在本研究过程中,通过有机金属化学气相沉积成功地合成了含砷阴离子分数为3-4%的富氮GaNAs合金-这些膜中的砷含量是迄今为止报道的最高掺入量。 GaNAs相的结构和光学表征得出结论,砷参与了亚稳合金的形成,并且仅在薄膜退火时才发生相分离成二元GaN和GaAs相。结果表明,衬底在稳定最容易在GaN模板上形成的三元富氮相中起着重要作用。根据光透射光谱对由于掺入砷引起的带隙减小进行了定量,得出砷含量为3.5%的薄膜的弯曲参数为25 eV。此外,还研究了其他生长方式,例如高质量GaN层的砷掺杂以及随着生长温度的变化薄膜中砷含量的变化。掺杂水平的砷掺入可改善GaN层的传输性能和光学性能。通过在GaNAs薄膜中同时掺入砷和镁,该领域未来的研究工作可能集中在获得带隙低于GaN的P型材料。

著录项

  • 作者

    Gherasimova, Maria.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Engineering Materials Science.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号