首页> 外文学位 >Evaluation of the Life-Cycle Reliability of Engineered Slopes Utilizing Multi-Source Monitoring Information
【24h】

Evaluation of the Life-Cycle Reliability of Engineered Slopes Utilizing Multi-Source Monitoring Information

机译:利用多源监测信息评估工程边坡的生命周期可靠性

获取原文
获取原文并翻译 | 示例

摘要

Engineered slopes are critical challenges in engineering practices. Failures of the engineered slopes can cause catastrophic losses of human lives and properties, which have been reported many times in history. Within the life cycle of a slope, its performance may vary with time due to deterioration and unexpected loadings or events. Regular monitoring is important since it can reflect the performance transition of the slope, and provide information for real-time evaluation of the slope reliability so that prompt effective risk mitigation measures can be undertaken when necessary. Besides, monitoring information also helps reduce the uncertainties associated with any calculation models and their input parameters. The primary objectives of this doctoral research are to develop a methodology to systematically characterize the variability of geotechnical systems; to evaluate the slope reliability based on the integration of multi-source and time-series monitoring information; and to analyse the performance transition of the engineered slope within its life cycle for effective slope management.;Analysis and design of an engineered slope face a significant amount of uncertainty. Inherent spatial variability associated with geologic conditions and parameters is a major source of uncertainty. An important task in site investigation is to characterize the spatial variability with limited field data. A method is proposed in this doctoral research to characterize the spatial variability using conditioned random fields. The limited measurement information within the site is used to constrain the random field. Due to spatial correlation, the site variability can be greatly reduced after incorporating the field data. Thus, a more accurate description of the geologic conditions and parameters can be obtained, which is desired for slope design and construction.;The spatial variability of soil and rock properties gives rise to scale-dependency in slope safety evaluation. Ignoring the spatial variability sometimes can lead to unconservative estimation of the failure probability of slopes. Random finite element method is a powerful tool to account for the spatial variability, but the computational efforts associated with this tool are large sometimes. In this doctoral research, a simplified reliability method is presented for slopes considering spatial soil or rock variability. In this method, equivalent homogeneous random parameters are used in a single random variable method (e.g., the first-order reliability method) to consider the spatial variability. The proposed method can produce a comparable failure probability as that calculated using a more rigorous random finite element method with the original spatially variable parameters, but the computational efficiency is largely improved.;As an additional safety measure, field monitoring is routinely conducted for engineered slopes. Observational information of different types and sources is collected. It remains a challenge to make use of the monitoring information to reveal failure mechanisms and assess the slope stability. A method is proposed in this study to assess the slope stability by integrating monitoring parameters with physical analysis. The observed information is first used to back analyse the strength and loading parameters, and then the updated basic parameters are used to calculate the factor of safety or failure probability of the slope. The dominant basic parameters whose uncertainties influence the observed results the most are identified from the probabilistic back analysis. Alert levels are defined in the monitoring parameter space based on a factor of safety or failure probability criterion.;Predicted performance of an engineered slope with complex geologic conditions and disturbance is subject to errors due to the presence of uncertainties. Monitoring data can also be used to complement the prediction of the future performance of the engineered slope by reducing the uncertainties in the prediction model and the input parameters simultaneously. A multi-step updating method is developed to enhance the prediction of future performance of the slope using incremental time-series monitoring data. The proposed method considers inherent uncertainty of the system, model uncertainty, and measurement uncertainty. The prediction is updated and improved gradually with new monitoring information using Bayes' theorem. The proposed method is applied to a multi-stage excavation of a 530 m high rock slope.;Many high engineered slopes are stabilized using anchors. The performance of an anchored slope may deteriorate over time due to corrosion of anchors or other causes. Proper maintenance is essential to upkeep slope functions. However, there are no unified criteria for quantitatively evaluating the timing and engineering scheme for slope maintenance. In this research, a resilience model is presented to analyse the performance degradation of an engineered slope due to anchor corrosion, and evaluate the recovery of slope performance after maintenance. Failure probability is used as an indicator to characterize the evolution of slope performance within its service life. The timing for maintenance is determined when the failure probability reaches a designated intolerable value. Information obtained from regular inspections is used to reduce the uncertainties and improve the accuracy of the determined maintenance time. The resilience index attained after maintenance is used to indicate the effectiveness of a repair measure. A benefit index, which incorporates both the effectiveness and cost of a repair measure, is defined and used to conduct a quantitative evaluation of different maintenance schemes. The proposed resilience model may be used to establish an effective slope management program.
机译:工程坡度是工程实践中的关键挑战。工程边坡的失败可能导致人类生命和财产的灾难性损失,这在历史上已被多次报道。在斜坡的生命周期内,由于性能恶化以及意外的载荷或事件,其性能可能会随时间变化。定期监测很重要,因为它可以反映边坡的性能变化,并为边坡可靠性的实时评估提供信息,以便在必要时可以采取迅速有效的风险缓解措施。此外,监控信息还有助于减少与任何计算模型及其输入参数相关的不确定性。这项博士研究的主要目标是开发一种方法来系统地描述岩土系统的可变性。基于多源和时间序列监测信息的集成,评估边坡的可靠性;并分析工程边坡在其生命周期内的性能过渡,以进行有效的边坡管理。;工程边坡的分析和设计面临大量不确定性。与地质条件和参数有关的固有空间变异性是不确定性的主要来源。现场调查的一项重要任务是利用有限的现场数据表征空间变异性。在这项博士研究中提出了一种使用条件随机场来表征空间变异性的方法。站点内有限的测量信息用于约束随机字段。由于空间相关性,在合并现场数据之后,可以大大降低站点变异性。因此,可以获得对地质条件和参数的更准确描述,这对于边坡设计和施工是需要的。土壤和岩石特性的空间变异性导致边坡安全性评估的规模依赖性。有时忽略空间变异性可能导致对斜坡破坏概率的保守估计。随机有限元法是解决空间变异性的有力工具,但有时与此工具相关的计算量很大。在这项博士研究中,提出了一种考虑空间土壤或岩石变异性的边坡简化可靠性方法。在该方法中,在单随机变量方法(例如,一阶可靠性方法)中使用等效的均质随机参数来考虑空间可变性。所提出的方法可以产生与使用具有原始空间可变参数的更严格的随机有限元方法计算出的失效概率相当的失效概率,但是计算效率得到了很大提高。;作为一种额外的安全措施,常规对工程边坡进行了现场监测。收集不同类型和来源的观测信息。利用监测信息揭示破坏机理和评估边坡稳定性仍然是一个挑战。本研究提出了一种通过将监测参数与物理分析相结合来评估边坡稳定性的方法。所观察到的信息首先用于对强度和荷载参数进行反分析,然后使用更新后的基本参数来计算边坡的安全系数或破坏概率。从概率反分析中可以确定其不确定性对观测结果影响最大的主要基本参数。警报级别是基于安全性或故障概率标准在监视参数空间中定义的。具有复杂地质条件和扰动的工程边坡的预测性能由于存在不确定性而容易出错。通过同时减少预测模型和输入参数的不确定性,监测数据还可用于补充工程边坡的未来性能预测。开发了一种多步更新方法,以使用增量时间序列监视数据来增强对坡度未来性能的预测。所提出的方法考虑了系统的固有不确定性,模型不确定性和测量不确定性。使用贝叶斯定理,使用新的监视信息逐步更新和改进了预测。该方法适用于530 m高的岩质边坡多阶段开挖。许多高工程边坡均采用锚固稳定。由于锚固件的腐蚀或其他原因,锚固斜坡的性能可能会随时间恶化。正确的维护对于维持斜坡功能至关重要。但是,没有统一的标准来定量评估边坡维护的时间和工程方案。在这项研究中,提出了一种弹性模型来分析由于锚固腐蚀而导致的工程边坡性能退化,并评估维护后边坡性能的恢复情况。失效概率用作表征斜坡性能在其使用寿命内的演变的指标。当故障概率达到指定的不可容忍值时,确定维护时间。通过定期检查获得的信息可减少不确定性并提高确定的维护时间的准确性。维护后获得的弹性指数用于指示维修措施的有效性。定义了结合了维修措施的有效性和成本的收益指数,并将其用于对不同维护方案进行定量评估。所提出的弹性模型可用于建立有效的边坡管理程序。

著录项

  • 作者

    Li, Xueyou.;

  • 作者单位

    Hong Kong University of Science and Technology (Hong Kong).;

  • 授予单位 Hong Kong University of Science and Technology (Hong Kong).;
  • 学科 Civil engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 255 p.
  • 总页数 255
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号