首页> 外文学位 >Molten gallium flux synthesis of known thermoelectric and novel magnetic inorganic clathrate compounds: Improving thermoelectric performance.
【24h】

Molten gallium flux synthesis of known thermoelectric and novel magnetic inorganic clathrate compounds: Improving thermoelectric performance.

机译:已知热电和新型磁性无机笼形化合物的熔融镓通量合成:改善热电性能。

获取原文
获取原文并翻译 | 示例

摘要

Molten gallium metal has been used as a solvent to grow large single crystals of known inorganic thermoelectric clathrates Sr8Ga 16Ge30, Ba8Ga16Ge30, and Ba8Ga16Si30. X-ray diffraction, thermal analysis, electron microprobe, Glow Discharge Mass Spectrometry, temperature dependent electrical conductivity and Seebeck coefficient measurements characterized the single crystals. The Thermoelectric performance was shown to be heavily dependent on the synthetic conditions including container choice, thermal history and impurity concentration.; Inorganic Clathrates have attracted intense interest in last several years as potential new materials for thermoelectric devices. If a small to moderate increase in thermoelectric performance over the currently used materials is realized, substantial environmental and technological gains could be achieved. Since thermoelectric refrigeration modules require no moving parts or heat exchange gas (freon) they offer significant advantages over conventional refrigeration technology that tends to fail due to the finite lifetime of the pumping equipment. High temperature devices are also extremely useful for power generation in harsh unforgiving environments where excess heat is available.; The thermoelectric performance, primarily at room temperature, of these compounds was found to be heavily dependent on the synthetic procedures used to obtain them. A flux growth procedure was developed to overcome the problems of the traditional melt-quench-anneal solid-state chemical approach. This procedure yielded large single crystals of the Sr8Ga16Ge 30, Ba8Ga16Ge30 and Ba8Ga 16Si30 compounds which ready facilitated their chemical and electronic study. Finally, an outlook on the application of these compounds as thermoelectric devices is given.; Application of the flux method to other systems was also successful in the discovery of two new inorganic clathrate compounds: type IV Eu4Ga 8Ge16 and type V Yb8Ga16Ge14. The Eu4Ga8Ge16 compound was found to be antiferromagnetic with a Tc of 8 K. The compound was investigated by orientated single crystal magnetic susceptibility, heat capacity, Mössbauer spectroscopy and polarized magnetic neutron diffraction. The compound exhibited a nearest-neighbor 1-dimensional ferromagnetic interaction in an overall 3-dimensional ordered antiferromagnetic state. Spin-flop experiments were used to extract the antiferromagnetic exchange coupling constant. The adherence to the Zintl concept was investigated by Mössbauer spectroscopy.
机译:熔融镓金属已被用作溶剂来生长已知无机热电包合物Sr 8 Ga 16 Ge 30 ,Ba 8 Ga 16 Ge 30 和Ba 8 Ga 16 Si 30 < / sub>。 X射线衍射,热分析,电子探针,辉光放电质谱法,与温度相关的电导率和塞贝克系数测量法表征了单晶。热电性能在很大程度上取决于合成条件,包括容器的选择,热历程和杂质浓度。近年来,作为热电设备的潜在新材料,无机包合物受到了广泛的关注。如果实现了热电性能相对于目前使用的材料的小到中等的提高,则可以实现巨大的环境和技术收益。由于热电制冷模块不需要活动部件或热交换气体(氟利昂),因此与传统的制冷技术相比,它们具有明显的优势,传统的制冷技术由于抽水设备的有限使用寿命而容易失效。高温设备对于在恶劣的,无法忍受的环境中产生过多热量的发电也非常有用。发现这些化合物的热电性能,主要是在室温下,在很大程度上取决于用于获得它们的合成程序。开发了一种助熔剂生长程序,以克服传统的熔体淬火退火固态化学方法的问题。此过程产生了Sr 8 Ga 16 Ge 30 ,Ba 8 Ga 16大单晶 Ge 30 和Ba 8 Ga 16 Si 30 化合物,它们有助于化学和电子研究。最后,给出了将这些化合物用作热电器件的前景。通量法在其他系统中的应用也成功地发现了两种新的无机笼形化合物:IV型Eu 4 Ga 8 Ge 16 并键入V Yb 8 Ga 16 Ge 14 。发现Eu 4 Ga 8 Ge 16 化合物是反铁磁性的,T c 为8K。通过定向单晶磁化率,热容,Mössbauer光谱和极化磁中子衍射研究了该化合物。该化合物在整体3维有序反铁磁状态下表现出最邻近的1维铁磁相互作用。旋转实验用于提取反铁磁交换耦合常数。 Mössbauer光谱学研究了对Zintl概念的遵守情况。

著录项

  • 作者

    Bryan, John Daniel.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Chemistry Inorganic.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号