首页> 外文学位 >Ellipsoidal approximation to polytopes and computational study of Lenstra's algorithm.
【24h】

Ellipsoidal approximation to polytopes and computational study of Lenstra's algorithm.

机译:多边形的椭圆近似和Lenstra算法的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

General integer programming is an important mathematical approach for many decision-making problems. In this field, a major theoretical breakthrough came in 1983 when H. W. Lenstra, Jr. proposed a polynomial-time algorithm for general integer programs while the number of variables is fixed. Two key ingredients of Lenstra's algorithm are ellipsoidal approximation of polytopes and lattice basis reduction. However, the lack of practically efficient algorithms and software for the ellipsoidal approximation of polytopes has made it difficult to study the computational properties of Lenstra's algorithm.;To bridge the gap between theory and computational practice for Lenstra's algorithm, we study both the ellipsoidal approximation to polytopes and computational properties of Lenstra's algorithm in this thesis. We have developed a reliable and efficient algorithm for computing the maximum volume ellipsoid inscribing a given polytope. This algorithm effectively exploits the problem-specific structures and utilizes a primal-dual type, interior point method. We show that this algorithm has a sound theoretical foundation, and demonstrate that it performs considerably better than a number of other algorithms through extensive numerical experiments.;Using our ellipsoidal approximation algorithm as a subroutine, we have implemented a version of Lenstra's algorithm for general integer programming feasibility problems. At each node, the method uses ellipsoidal approximation and lattice basis reduction to find a "thin" direction of the polytope, and branches on hyperplanes, rather than on variables as in the traditional branch-and-bound method. In this procedure, it is guaranteed that the number of branches at each node is bounded and small. Our numerical results on small- to medium-sized test instances suggest that Lenstra's algorithm examine much fewer nodes than the traditional branch-and-bound method. However, there is a tradeoff between many nodes and fast reoptimization as in the traditional branch-and-bound method and fewer nodes but more time-consuming decisions on branching as in Lenstra's algorithm. Currently, the main bottle-neck in the performance of the algorithm lies at the step of lattice basis reduction. If this step is sufficiently improved, then Lenstra's algorithm, when combined with other techniques such as cutting planes, promises to be efficient for certain classes of difficult problems.
机译:通用整数编程是解决许多决策问题的重要数学方法。在该领域,一个重大的理论突破出现在1983年,当时H. W. Lenstra,Jr.提出了在变量数量固定的情况下用于一般整数程序的多项式时间算法。 Lenstra算法的两个关键要素是多面体的椭圆近似和晶格基数约简。但是,由于缺乏实用有效的多面体椭圆近似算法和软件,因此难以研究Lenstra算法的计算特性。为了弥合Lenstra算法的理论和计算实践之间的差距,我们研究了椭圆近似和本文研究了Lenstra算法的多多边形和计算性质。我们已经开发了一种可靠有效的算法,用于计算包含给定多义位的最大体积椭球。该算法有效地利用了特定于问题的结构,并利用了原始对偶类型的内部点方法。我们证明了该算法具有良好的理论基础,并通过大量的数值实验证明了其性能比许多其他算法要好得多。;使用椭圆近似算法作为子例程,我们为通用整数实现了Lenstra算法的一个版本编程可行性问题。在每个节点上,该方法使用椭圆近似和晶格基约化来找到多面体的“细”方向,并在超平面上分支,而不是像传统的分支定界方法那样在变量上分支。在此过程中,可以确保每个节点的分支数量是有限的并且很小。我们在中小型测试实例上的数值结果表明,Lenstra的算法比传统的分支定界方法检查的节点要少得多。但是,与传统的分支定界方法一样,在许多节点和快速重新优化之间存在折衷,而在节点上(如Lenstra的算法),节点较少,但分支决策却比较耗时。当前,算法性能的主要瓶颈在于格基缩减的步骤。如果这一步骤得到了充分的改善,那么Lenstra的算法与其他技术(例如切割平面)相结合时,有望对某些类别的难题有效。

著录项

  • 作者

    Gao, Liyan.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Operations Research.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号