首页> 外文学位 >Incorporating reduced kinetic mechanisms in numerical simulations of nonpremixed flames.
【24h】

Incorporating reduced kinetic mechanisms in numerical simulations of nonpremixed flames.

机译:在非预混火焰的数值模拟中纳入简化的动力学机制。

获取原文
获取原文并翻译 | 示例

摘要

In this study, numerical investigations are conducted to understand the limits of applicability and influence of progressively more accurate levels of reduction of fuel oxidation kinetics on nonpremixed flame structure, extinction characteristics, and turbulent flow structure under both steady and unsteady flow conditions. One-, three- and four-step reduced kinetic mechanisms for nonpremixed methane-air flames are employed to represent the combustion processes. First, steady flame calculations are performed in a one-dimensional Tsuji burner configuration. Next, unsteady Direct Numerical Simulations (DNS) is carried out for a two-dimensional flame interacting with a pair of vortices initialized on the fuel side to understand the dynamics of flame-vortex interaction. Lastly, interaction between a two-dimensional field of homogeneous decaying turbulence and a nonpremixed flame is investigated using the same DNS technique.; Results from the one-dimensional flame study indicate that flames respond differently to increasing strain rate in mixture fraction space. Although the flame structures are more accurately predicted using three- and four-step chemistries, this study shows the correlation between the accuracy of extinction limits prediction and increasing complexity of the combustion schemes is not straightforward. The two-dimensional unsteady flame-vortex interaction study shows consistent behavior with respect to the shifting of respective reaction zones and CH4 species as in the one-dimensional steady Tsuji study. DNS data shows that the concentrations of H2 and H species within the flame zone play a significant role in the unsteady flame-vortex dynamics. Key transient features observed in the three- and four-step mechanisms are not captured by the global one-step mechanism, thereby making a three-step model a minimum requirement in investigating flame structure modification. A model for the equivalent quasi-steady strain rate is proposed and validated. Results from the turbulent flame study with three- and four-step kinetic mechanisms show flame wrinkling due to unsteady effects. Localized extinction of the flame is not observed for the range of parameters investigated. Modification of the flame structure due to turbulence is consistent with that under the continuous burning conditions in the flame-vortex study. (Abstract shortened by UMI.)
机译:在这项研究中,进行了数值研究,以了解适用性的局限性以及逐渐更精确的燃料氧化动力学还原水平对非预混火焰结构,消光特性和稳态和非稳态流动条件下的湍流结构的影响。非预混甲烷-空气火焰的一,三和四步还原动力学机理被用来代表燃烧过程。首先,在一维Tsuji燃烧器配置中执行稳定的火焰计算。接下来,对二维火焰进行非定常直接数值模拟(DNS),该二维火焰与在燃料侧初始化的一对涡旋相互作用,以了解火焰涡旋相互作用的动力学。最后,使用相同的DNS技术研究了均匀衰减湍流的二维场与非预混火焰之间的相互作用。一维火焰研究的结果表明,火焰对混合分数空间中应变率增加的反应不同。尽管使用三步和四步化学方法可以更准确地预测火焰结构,但这项研究表明,消光极限预测的准确性与燃烧方案的复杂性之间的关系并非一帆风顺。二维非稳态火焰-涡流相互作用研究显示出与一维稳态Tsuji研究中一致的行为,即各个反应区和CH 4 物种的移位。 DNS数据表明,火焰区内H 2 和H物种的浓度在不稳定涡旋动力学中起着重要作用。三步和四步机制中观察到的关键瞬态特征没有被全局单步机制捕获,因此使三步模型成为研究火焰结构修改的最低要求。提出并验证了等效准稳态应变率模型。具有三步和四步动力学机理的湍流火焰研究的结果表明,由于不稳定效应,火焰起皱。对于所研究的参数范围,未观察到火焰的局部熄灭。由湍流引起的火焰结构的变化与火焰涡流研究中连续燃烧条件下的变化一致。 (摘要由UMI缩短。)

著录项

  • 作者

    Hsu, Joshua Sun-See.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 393 p.
  • 总页数 393
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号