首页> 外文学位 >Nanolithography and biomolecular recognition as tools for the directed assembly and study of particle-based materials.
【24h】

Nanolithography and biomolecular recognition as tools for the directed assembly and study of particle-based materials.

机译:纳米光刻和生物分子识别是用于直接组装和研究基于颗粒的材料的工具。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation explored ways of merging chemically and biologically guided assembly of nanoparticle building blocks with surface-templated nanofabrication using dip-pen nanolithography (DPN), a scanning-probe based lithography. The factors that affect the activity of DNA-modified gold nanoparticles, specifically, the surface coverage and hybridization of these hybrid materials were determined. In addition, the conditions for generating stable DNA-modified nanoparticles were examined, as well as the effects of DNA length and sequence on particle properties. Importantly, a protocol was developed for controlling the average number of active DNA strands per particle. The details of the interaction of DNA with gold surfaces was further elucidated by using reflection-absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) mass spectroscopy to directly measure the strengths of interaction of the DNA bases and corresponding nucleosides to gold thin films. Desorption of films of the adsorbates from gold revealed significant differences in base-gold binding affinities. Significantly, the results reflect the trends observed for nucleoside adsorption onto gold nanoparticles and point to ways of designing stable, tailorable nanoparticle building blocks.; DPN was used to generate chemical and biological nanoscale templates for particle assembly. First, charged dot arrays were formed on gold substrates. These combinatorial chemical templates were screened to determine optimum dot size for immobilization of single charged polystyrene spheres. Next, to increase the sophistication of the assembly approach, DPN was used to generate DNA nanostructures. Two-component nanoscale DNA patterns were generated by coupling amine-modified DNA to chemically patterned surfaces. Assembly of two different sizes of DNA modified gold nanoparticles onto the DNA patterns through specific orthogonal DNA hybridization interactions was demonstrated. Finally, the conditions for direct-write DPN of DNA and properties of the resulting DNA nanostructures on metal and insulating substrates were investigated. It was found that DNA pattern size varies predictably with tip-surface contact time, and the rate of patterning rate is dictated by relative humidity. Resulting DNA nanostructures exhibited high selectivity with respect to organization of DNA-modified gold nanoparticles.
机译:本文探讨了使用浸没式纳米光刻技术(DPN)(一种基于扫描探针的光刻技术)将纳米颗粒构件的化学和生物引导组装与表面模板化纳米制造相结合的方法。确定了影响DNA修饰金纳米颗粒活性的因素,特别是这些杂化材料的表面覆盖率和杂交。另外,检查了产生稳定的DNA修饰的纳米颗粒的条件,以及DNA长度和序列对颗粒性质的影响。重要的是,开发了一种协议来控制每个粒子的平均活性DNA链数。通过使用反射吸收红外光谱(RAIRS)和温度编程解吸(TPD)质谱法直接测量DNA碱基和相应核苷与金薄层之间的相互作用强度,进一步阐明了DNA与金表面相互作用的细节。电影。吸附物膜从金上的解吸显示出基金结合亲和力的显着差异。重要的是,该结果反映了观察到的核苷吸附到金纳米颗粒上的趋势,并指出了设计稳定,可定制的纳米颗粒构造单元的方法。 DPN用于生成用于粒子组装的化学和生物纳米级模板。首先,在金基板上形成带电的点阵。筛选这些组合化学模板以确定用于固定单电荷聚苯乙烯球的最佳点尺寸。接下来,为了提高组装方法的复杂性,DPN用于生成DNA纳米结构。通过将胺修饰的DNA偶联到化学图案化的表面上,可以生成两组分的纳米级DNA图案。通过特定的正交DNA杂交相互作用,将两种不同大小的DNA修饰的金纳米颗粒组装到DNA模式上。最后,研究了直接写DPN DNA的条件以及在金属和绝缘基底上所得DNA纳米结构的特性。发现DNA图案的大小可预测地随尖端表面接触时间而变化,并且图案形成速率由相对湿度决定。所得的DNA纳米结构相对于DNA修饰的金纳米颗粒的组织表现出高选择性。

著录项

  • 作者

    Demers, Linette Margaret.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号