首页> 外文学位 >Nanobiology: Halting steps into a portion of Richard Feynman's vision.
【24h】

Nanobiology: Halting steps into a portion of Richard Feynman's vision.

机译:纳米生物学:停止介入理查德·费曼(Richard Feynman)的愿景。

获取原文
获取原文并翻译 | 示例

摘要

The advancement of nanotechnology has slightly opened the door for significant applications in biology. These technologies offer the potential to analyze and manipulate biological systems on the single cell and single molecule scales. The ability to analyze biological systems on these scales provides a direct means to reverse engineer multi-cellular organisms by following gene regulation and protein expression from the point of embryo fertilization onward. The need for amplification for standard bulk assays would be eliminated. Significant diagnostic applications would also be possible especially for genetic disorders and viral based diseases. Unfortunately there are still significant hurdles to overcome so that this potential can be realized and the technology can be used in a more robust manner. This thesis describes a significant effort for advancing the state of the nanoscale art. Specifically: the design and development of microfluidic devices for manipulating and analyzing DNA and E. coli cells, and the design and development of a modular DSP based feedback controller for scanned probe microscope (SPM) and nanomanipulator applications. In addition two significant applications of the DSP controller are presented: controlling the Q of an SPM microcantilever and sculpting the force potential of optical tweezers on the nanometer scale. With the microfluidic devices described here single DNA molecules from 2–200 kbp were sized and sorted with equivalent or better resolution than gel electrophoresis methods and in less time. Using similar techniques a disposable fluorescent cell sorter was developed and demonstrated by sorting green fluorescent protein E. coli cells from wild type cells. Using the DSP electronics the Q of an SPM microcantilever was controlled over three orders of magnitude using force feedback techniques. The Q can be lowered to one, enabling high speed tapping mode scanning ten times faster than possible with the natural Q. Using the same basic DSP electronics the potential of optical tweezers was arbitrarily shaped with 10 nm edge resolution.
机译:纳米技术的进步为生物学中的重要应用打开了一扇门。这些技术提供了在单细胞和单分子规模上分析和操纵生物系统的潜力。从胚胎受精的角度出发,通过遵循基因调控和蛋白质表达,在这些规模上分析生物系统的能力提供了一种直接手段来逆向工程化多细胞生物。无需进行标准批量分析的扩增。重要的诊断应用也将是可能的,尤其是对于遗传性疾病和基于病毒的疾病。不幸的是,仍然有许多障碍需要克服,以便可以实现这种潜力,并且可以更可靠地使用该技术。本论文描述了为推动纳米技术发展而付出的巨大努力。特别是:用于处理和分析DNA和大肠杆菌细胞的微流控设备的设计和开发,以及用于扫描探针显微镜(SPM)和纳米操纵器应用的基于模块化DSP的反馈控制器的设计和开发。此外,还介绍了DSP控制器的两个重要应用:控制SPM微悬臂梁的Q和在纳米级雕刻光镊的受力潜力。使用此处介绍的微流控设备,可以对大小为2–200 kbp的单个DNA分子进行大小确定和排序,且其分辨率与凝胶电泳方法相当或更好,并且可以在更短的时间内完成。使用类似的技术,开发了一种一次性荧光细胞分选仪,并通过从野生型细胞中分选绿色荧光蛋白大肠杆菌细胞进行了证明。使用DSP电子设备,通过力反馈技术将SPM微悬臂梁的Q控制在三个数量级。可以将Q降低到1,从而使高速敲击模式扫描的速度比自然Q快十倍。使用相同的基本DSP电子器件,光镊的潜力可以任意调整为10 nm边缘分辨率。

著录项

  • 作者

    Spence, Charles Frederick.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Physics General.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号