首页> 外文学位 >Thermal properties of dry soils: Fundamentals and applications.
【24h】

Thermal properties of dry soils: Fundamentals and applications.

机译:干燥土壤的热学性质:基本原理和应用。

获取原文
获取原文并翻译 | 示例

摘要

The United States of America is the largest consumer and importer of fossil fuels in the world. The increasing demand for energy costs has forced us to look for alternative sources of clean and affordable energy. Renewable energy comes from natural resources such as solar, wind, hydropower, geothermal heat and biomass, and offers the only sustainable alternative to power the world.;Geothermal energy relies on the fact that the ground temperature stays constant during the year, warmer than the atmosphere during the winter and cooler during the summer. In geothermal systems, the geothermal heat pump is used to transfer the heat stored in the earth or in ground water into a building during winter, and transferring it out of the building and back into the ground during summer. Thus, the ground is a heat source in winter and a heat sink in summer. To transfer the heat from the ground to the building, a network of underground pipes is required which can affect the efficiency and cost of the system. By improving the heat transfer between the pipes and the soil, we can increase the efficiency of the geothermal system and make it more affordable.;The first objective of this dissertation is to investigate the thermal properties of dry granular media and porous rocks. Knowledge of these thermal properties are important for the design of heat pumps in geothermal system. An experimental study was carried out to explore the physical nature of thermal conduction in dry granular media (i.e., soils) and fused granular media (i.e., porous rocks). Electrical conductors exhibit higher thermal conductivity (lambda,&Tgr;) than other solid materials. Differences can be as high as three orders of magnitude in lambda&Tgr;, and are attributed to electron heat transfer; however, thermal conduction in metallic particles decreases to values very similar to those of non-electrically conductive particles. To uncover the underlying mechanisms of heat conduction in granular media, Ottawa sand and lead shot particles were used to create specimens tested for thermal conductivity, p-wave velocity and electrical conductivity. A newly developed test chamber allowed for simultaneous measurements of the three parameters under increasing vertical stress in zero-lateral-strain loading. Results show that in granular media, whether electrically conductive or not, heat conduction is phononic in nature and the contribution from electron heat conduction is negligible. Potential changes in heat conduction mechanisms that arise from changes in the nature of inter-particle contacts (i.e., fused spoils or porous rocks) were monitored using sea salt and lead shot specimens subjected to high temperature and pressure (i.e., sintered). The next objective was to determine the effective thermal properties of granular mixtures of high and low thermal conductivity solid particles. Understanding the changes in thermal properties as a function of mass fractions should prove useful in the engineering of dry geo-materials for geothermal applications. Specimens made of lead shot and lead wires mixed with Ottawa sand were subjected to vertical loading while simultaneously monitoring the effective thermal conductivity, p-wave velocity and electrical conductivity. Results show that the relative mass fractions in the mixture play a very important role in the transfer thermal energy. The differences in particle density between lead and quartz explain the sensitivity of thermal conductivity to changes in the mass fraction. Again, the results highlight the dominant role of the stiffness of the particulate media.;Finally, a numerical study was conducted to examine the potential improvement in heat transfer and storage in backfills that incorporate phase change materials. Results indicate that using phase change materials as part of the backfill can alter the radius of influence of the borehole and the storage and release of thermal energy.
机译:美利坚合众国是世界上最大的化石燃料消费国和进口国。不断增长的能源成本需求迫使我们寻找清洁和负担得起的能源的替代来源。可再生能源来自太阳能,风能,水力发电,地热能和生物质能等自然资源,是世界上唯一可持续的替代能源。地热能依赖于这样的事实,即一年中地温保持恒定,比地热高。冬季气氛宜人,夏季凉爽。在地热系统中,地热热泵用于在冬季将储存在土壤或地下水中的热量转移到建筑物中,并在夏季将其从建筑物中转移出并返回到地下。因此,地面在冬天是热源,在夏天是散热器。为了将热量从地面传递到建筑物,需要使用地下管道网络,这会影响系统的效率和成本。通过改善管道与土壤之间的热传递,我们可以提高地热系统的效率,使其价格更便宜。本论文的首要目的是研究干燥颗粒介质和多孔岩石的热学性质。这些热特性的知识对于地热系统中热泵的设计很重要。进行了一项实验研究,以探索在干燥的颗粒状介质(即土壤)和熔融的颗粒状介质(即多孔岩石)中热传导的物理性质。电导体比其他固体材料具有更高的热导率(λ)。 lambda&Tgr;的差异可能高达三个数量级,这归因于电子的传热。然而,金属颗粒中的热传导减小到非常类似于非导电颗粒的热传导值。为了揭示颗粒状介质中热传导的潜在机理,渥太华砂和铅粒被用于创建测试热导率,p波速度和电导率的样品。新开发的测试室允许在零侧向应变载荷下,在垂直应力增加的情况下同时测量三个参数。结果表明,在粒状介质中,无论是否导电,导热本质上都是声子,而电子导热的贡献可以忽略不计。使用经受高温和高压(即烧结)的海盐和铅丸样品,可以监测由于颗粒间接触(即熔融的土或多孔岩石)的性质变化而引起的导热机理的潜在变化。下一个目标是确定高导热率和低导热率固体颗粒的颗粒混合物的有效热性能。理解热性质作为质量分数的函数的变化应该在用于地热应用的干土材料的工程中证明是有用的。铅丸和与渥太华沙混合的铅丝制成的样品要承受垂直载荷,同时要监测有效的热导率,p波速度和电导率。结果表明,混合物中的相对质量分数在热能传递中起着非常重要的作用。铅和石英之间的颗粒密度差异解释了热导率对质量分数变化的敏感性。再次,结果突出了颗粒介质刚度的主要作用。最后,进行了一项数值研究,以研究结合相变材料的回填材料中传热和存储的潜在改进。结果表明,使用相变材料作为回填的一部分可以改变井眼的影响半径以及热能的存储和释放。

著录项

  • 作者

    Nasirian, Ali.;

  • 作者单位

    New Mexico State University.;

  • 授予单位 New Mexico State University.;
  • 学科 Civil engineering.;Geotechnology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号