首页> 外文学位 >Vortex properties of the high-temperature superconductor bismuth strontium calcium copper oxide, and controlled deposition of carbon nanotubes.
【24h】

Vortex properties of the high-temperature superconductor bismuth strontium calcium copper oxide, and controlled deposition of carbon nanotubes.

机译:高温超导铋锶钙铜氧化物的涡旋特性以及碳纳米管的可控沉积。

获取原文
获取原文并翻译 | 示例

摘要

This thesis contains two sections. The first section discusses vortex matter behavior in a high temperature superconductor, Bi2Sr 2CaCu2O8+delta (BSCCO), studied using transport and local magnetization measurements. Vortex matter phase transitions in micron-sized BSCCO are investigated using GaAs/AlGaAs Hall sensors. We observe that the vortex solid 3D-2D phase transition disappears below a temperature-dependent critical sample size. Vortex penetration field measurements in micron-sized BSCCO show that the Bean-Livingston surface barrier effect dictates the vortex penetration field at high temperatures, and the bulk pinning effect dictates the vortex penetration field at low temperatures. When measuring the c-axis magneto-resistance of BSCCO in tilted magnetic fields, we observe that the in-plane pancake vortices arrange in a zigzag structure along the c-axis of the sample at low tilt angles and high magnetic fields. This zigzag arrangement lowers the interaction energy of pancakes with Josephson vortices. Finally, in order to avoid the Bean-Livingston surface barrier effect, we measured vortex dissipation in BSCCO using a Corbino disk contact geometry. We found that, the vortex matter transport properties in BSCCO are determined by sample bulk properties, and not the Bean-Livingston surface barrier effect.;The second section of this thesis discusses the controlled deposition and manipulation of single carbon nanotubes using MEMS (Microelectromechanical systems) devices. Large-scale controlled deposition of individual nanotubes is a crucial requirement for realistic applications of nanotube-based electronic devices. Using novel substrate designs, we deposit single aligned nanotubes with complete control utilizing capillary forces and dielectrophoresis. We can also pull and bend the deposited single nanotubes in situ in a Transmission Electron Microscope.;The majority of the measurements on BSCCO and carbon nanotubes discussed here are made possible by the development of novel micro-fabrication techniques using the Micro-fabrication Laboratory facilities at UC Berkeley.
机译:本文分为两个部分。第一部分讨论了高温超导体Bi2Sr 2CaCu2O8 + delta(BSCCO)中的旋涡物质行为,研究了利用输运和局部磁化强度的研究。使用GaAs / AlGaAs霍尔传感器研究了微米级BSCCO中的涡旋物质相变。我们观察到,涡旋固体3D-2D相变在取决于温度的关键样本大小以下消失。在微米级BSCCO中的涡流穿透场测量结果表明,Bean-Livingston表面势垒效应决定了高温下的涡旋穿透场,而体钉扎效应决定了低温下的涡旋穿透场。在倾斜磁场中测量BSCCO的c轴磁阻时,我们观察到在低倾斜角和高磁场下,面内煎饼涡流沿样品c轴呈锯齿状排列。这种曲折布置降低了煎饼与约瑟夫森涡流的相互作用能。最后,为了避免Bean-Livingston表面势垒效应,我们使用Corbino圆盘接触几何形状测量了BSCCO中的涡流耗散。我们发现,BSCCO中的涡旋物质传输特性是由样品的整体特性决定的,而不是由Bean-Livingston表面势垒效应决定的。本论文的第二部分讨论了使用MEMS(微机电系统)控制单个碳纳米管的沉积和操作。 ) 设备。单个纳米管的大规模受控沉积是基于纳米管的电子设备的实际应用的关键要求。使用新颖的基板设计,我们可以利用毛细作用力和介电电泳完全控制地沉积单个排列的纳米管。我们也可以在透射电子显微镜中原位拉伸和弯曲沉积的单纳米管。;这里讨论的大多数BSCCO和碳纳米管的测量都是通过使用微细加工实验室设备开发新型微细加工技术而实现的。在加州大学伯克利分校。

著录项

  • 作者

    Wang, Yan Mei Aileen.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号