首页> 外文学位 >Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells.
【24h】

Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells.

机译:用于提高温度和降低相对湿度的PEM燃料电池的无机质子传导复合膜。

获取原文
获取原文并翻译 | 示例

摘要

Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures.;The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120 °C and 50 % RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity.;A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail.;Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters either by mixing inorganic gels or solutions with Nafion solution followed by membrane casting or by blending inorganic powders with Nafion solution. The membrane properties, such as acidity, swelling, water uptake, thermostability, proton conductivity, and electrochemical performance, were explored in depth. We characterized the inorganic phase inside composite membranes and its interaction with the Nafion matrix by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Furthermore, we discussed the effect of these inorganic conductors' properties, such as particle size, conductivity, and interaction between functional groups and the Nafion, on the membrane conductivity. The contribution of hydrophilic inorganic particles in improving the membrane fuel cell performance was numerically analyzed by Tafel plot.;Finally, the proton conductivity phenomena in composite membranes were simulated with two proton-transport models; one was based on the rule of mixtures, and the other was described by generalized Stefan-Maxwell equations. In the simulation, we proposed a new route in rational design of high proton-conductive composite membranes.
机译:质子交换膜(PEM)燃料电池被认为是用于未来运输和固定发电的极有前途的能量转换系统,并且在过去十年中一直在深入研究中。不幸的是,先进的PEM燃料电池设计和组件仍然不允许该技术的经济商业实现。主要障碍是质子传导膜的高成本,低相对湿度(RH)时的低质子传导性以及高温下聚合物膜的脱水和降解。质子传导复合膜,在热和干燥条件下(120°C和50%RH)可提供约100 mS cm-1的电导率。该方法基于无机添加剂和复合膜的质子传导性的基础和实验研究。我们合成并研究了多种基于有机-无机Nafion的复合膜。特别是,我们分析了它们的基本性能,包括热稳定性,形态,无机网络与Nafion团簇之间的相互作用以及无机相对膜电导率的影响。;预先研究了多种无机材料,以选择用于复合膜的质子传导性无机添加剂。我们开发了一种电导率测量方法,详细讨论了固体酸材料,磷酸锆,硫酸化氧化锆(S-ZrO2),磷硅酸盐凝胶和圣塔芭芭拉无定形二氧化硅(SBA-15)的质子电导率特性。用不同的方法合成了含有Nafion和不同量的官能化无机添加剂(硫酸化的无机物,如S-ZrO2,SBA-15,物质的Mobil MCM-41和S-SiO2,以及膦酸酯化的无机P-SiO2)。通过将无机凝胶或溶液与Nafion溶液混合,然后进行膜浇铸,或将无机粉末与Nafion溶液混合,我们将无机颗粒掺入Nafion簇中。深入研究了膜的性质,如酸度,溶胀,吸水率,热稳定性,质子传导性和电化学性能。我们通过扫描电子显微镜(SEM)和傅立叶变换红外光谱(FT-IR)表征了复合膜内部的无机相及其与Nafion基质的相互作用。此外,我们讨论了这些无机导体的性质(如粒径,电导率以及官能团与Nafion之间的相互作用)对膜电导率的影响。通过Tafel图数值分析了亲水性无机颗粒对改善膜燃料电池性能的贡献。最后,利用两个质子传输模型模拟了复合膜中的质子传导现象。一个基于混合规则,另一个通过广义的Stefan-Maxwell方程描述。在仿真中,我们提出了合理设计高质子传导复合膜的新途径。

著录项

  • 作者

    Wang, Chunmei.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Environmental.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号